Plasmon-Resonant Gold Nanostars With Variable Size as Contrast Agents for Imaging Applications

Plasmon-resonant nanostars (NSts) have recently found applications in biophotonics due to their unique optical and chemical characteristics, showing comparable or superior properties than other anisotropic plasmon-resonant nanoparticles. In this paper, we synthesized gold NSts by the seed-mediated s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2016-05, Vol.22 (3), p.13-20
Hauptverfasser: Bibikova, Olga, Popov, Alexey, Bykov, Alexander, Fales, Andrew, Hsiangkuo Yuan, Skovorodkin, Ilya, Kinnunen, Matti, Vainio, Seppo, Tuan Vo-Dinh, Tuchin, Valery V., Meglinski, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 3
container_start_page 13
container_title IEEE journal of selected topics in quantum electronics
container_volume 22
creator Bibikova, Olga
Popov, Alexey
Bykov, Alexander
Fales, Andrew
Hsiangkuo Yuan
Skovorodkin, Ilya
Kinnunen, Matti
Vainio, Seppo
Tuan Vo-Dinh
Tuchin, Valery V.
Meglinski, Igor
description Plasmon-resonant nanostars (NSts) have recently found applications in biophotonics due to their unique optical and chemical characteristics, showing comparable or superior properties than other anisotropic plasmon-resonant nanoparticles. In this paper, we synthesized gold NSts by the seed-mediated surfactant-free method. By varying the diameters and amount of spherical seeds we tuned the final NSts tip-to-tip sizes to 50, 82, 100, and 120 nm ensuring the plasmon-resonant peak location between 710 and 830 nm, and the scattering/absorption ratio at the plasmon-resonant wavelengths being 0.12, 0.25, 0.30, 0.35 correspondingly. We investigated the application of the NSts as contrast agents for imaging techniques operating at visible and infrared wavelengths: optical coherence tomography (OCT) and Doppler OCT with the spectrum centered at 930-nm wavelength, as well as for conventional confocal laser scanning microscopy (CLSM) working at 633 nm. The most intense OCT signal was registered from the largest NSts, in correspondence with spectroscopy measurements at 930-nm wavelength. For imaging of nanoparticles incubated with living cells, we applied CLSM in combined scattering and transmission modes, and observed localization of the NSts on the cell surface. Due to the highest scattering at the CLSM operating wavelength, the strongest signal was obtained from the 82-nm particles; the lowest intensity of the CLSM backscattered signal was detected from the cells labeled with the smallest NSts. Thus, by tuning the initial concentration of seeds, it is possible to adjust the size (and scattering properties) of the nanostars to the operating wavelength of the optical device to achieve the best performance.
doi_str_mv 10.1109/JSTQE.2016.2526602
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787188610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7400932</ieee_id><sourcerecordid>4047165991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-843ee1f62e6cad6efa9619d70c721c9a5be28d5268cf6b6d9f068efb5086bcad3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl7CaOs6yqUooqXi2PFZaT2MVVagfbXcDXk1LEamZxzx3NQeicwIAQKK5uF8vHyYACYQOaUcaAHqAeyTKepFlKD7sd8jyhDN6O0UkIawDgKYceen9oZNg4mzyp4Ky0EU9dU-M7aV2I0gf8auIHfpHeyLJReGG-FZYBj52NXoaIRytlY8DaeTzbyJWxKzxq28ZUMhpnwyk60rIJ6uxv9tHz9WQ5vknm99PZeDRPKkogJjwdKkU0o4pVsmZKy4KRos6hyimpCpmVivK6e4xXmpWsLjQwrnSZAWdlRwz76HLf23r3uVUhirXbetudFCTnOeGcEehSdJ-qvAvBKy1abzbSfwkCYudR_HoUO4_iz2MHXewho5T6B_IUoBjS4Q-AF3AY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787188610</pqid></control><display><type>article</type><title>Plasmon-Resonant Gold Nanostars With Variable Size as Contrast Agents for Imaging Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Bibikova, Olga ; Popov, Alexey ; Bykov, Alexander ; Fales, Andrew ; Hsiangkuo Yuan ; Skovorodkin, Ilya ; Kinnunen, Matti ; Vainio, Seppo ; Tuan Vo-Dinh ; Tuchin, Valery V. ; Meglinski, Igor</creator><creatorcontrib>Bibikova, Olga ; Popov, Alexey ; Bykov, Alexander ; Fales, Andrew ; Hsiangkuo Yuan ; Skovorodkin, Ilya ; Kinnunen, Matti ; Vainio, Seppo ; Tuan Vo-Dinh ; Tuchin, Valery V. ; Meglinski, Igor</creatorcontrib><description>Plasmon-resonant nanostars (NSts) have recently found applications in biophotonics due to their unique optical and chemical characteristics, showing comparable or superior properties than other anisotropic plasmon-resonant nanoparticles. In this paper, we synthesized gold NSts by the seed-mediated surfactant-free method. By varying the diameters and amount of spherical seeds we tuned the final NSts tip-to-tip sizes to 50, 82, 100, and 120 nm ensuring the plasmon-resonant peak location between 710 and 830 nm, and the scattering/absorption ratio at the plasmon-resonant wavelengths being 0.12, 0.25, 0.30, 0.35 correspondingly. We investigated the application of the NSts as contrast agents for imaging techniques operating at visible and infrared wavelengths: optical coherence tomography (OCT) and Doppler OCT with the spectrum centered at 930-nm wavelength, as well as for conventional confocal laser scanning microscopy (CLSM) working at 633 nm. The most intense OCT signal was registered from the largest NSts, in correspondence with spectroscopy measurements at 930-nm wavelength. For imaging of nanoparticles incubated with living cells, we applied CLSM in combined scattering and transmission modes, and observed localization of the NSts on the cell surface. Due to the highest scattering at the CLSM operating wavelength, the strongest signal was obtained from the 82-nm particles; the lowest intensity of the CLSM backscattered signal was detected from the cells labeled with the smallest NSts. Thus, by tuning the initial concentration of seeds, it is possible to adjust the size (and scattering properties) of the nanostars to the operating wavelength of the optical device to achieve the best performance.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2016.2526602</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biophotonics ; cellular biophysics ; confocal laser scanning microscopy ; Gold ; gold nanostars ; Microscopy ; Nanoparticles ; optical coherence tomography ; plasmon-resonant nanoparticles ; Scattering ; spectroscopy ; Suspensions</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2016-05, Vol.22 (3), p.13-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c210t-843ee1f62e6cad6efa9619d70c721c9a5be28d5268cf6b6d9f068efb5086bcad3</citedby><cites>FETCH-LOGICAL-c210t-843ee1f62e6cad6efa9619d70c721c9a5be28d5268cf6b6d9f068efb5086bcad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7400932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7400932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bibikova, Olga</creatorcontrib><creatorcontrib>Popov, Alexey</creatorcontrib><creatorcontrib>Bykov, Alexander</creatorcontrib><creatorcontrib>Fales, Andrew</creatorcontrib><creatorcontrib>Hsiangkuo Yuan</creatorcontrib><creatorcontrib>Skovorodkin, Ilya</creatorcontrib><creatorcontrib>Kinnunen, Matti</creatorcontrib><creatorcontrib>Vainio, Seppo</creatorcontrib><creatorcontrib>Tuan Vo-Dinh</creatorcontrib><creatorcontrib>Tuchin, Valery V.</creatorcontrib><creatorcontrib>Meglinski, Igor</creatorcontrib><title>Plasmon-Resonant Gold Nanostars With Variable Size as Contrast Agents for Imaging Applications</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Plasmon-resonant nanostars (NSts) have recently found applications in biophotonics due to their unique optical and chemical characteristics, showing comparable or superior properties than other anisotropic plasmon-resonant nanoparticles. In this paper, we synthesized gold NSts by the seed-mediated surfactant-free method. By varying the diameters and amount of spherical seeds we tuned the final NSts tip-to-tip sizes to 50, 82, 100, and 120 nm ensuring the plasmon-resonant peak location between 710 and 830 nm, and the scattering/absorption ratio at the plasmon-resonant wavelengths being 0.12, 0.25, 0.30, 0.35 correspondingly. We investigated the application of the NSts as contrast agents for imaging techniques operating at visible and infrared wavelengths: optical coherence tomography (OCT) and Doppler OCT with the spectrum centered at 930-nm wavelength, as well as for conventional confocal laser scanning microscopy (CLSM) working at 633 nm. The most intense OCT signal was registered from the largest NSts, in correspondence with spectroscopy measurements at 930-nm wavelength. For imaging of nanoparticles incubated with living cells, we applied CLSM in combined scattering and transmission modes, and observed localization of the NSts on the cell surface. Due to the highest scattering at the CLSM operating wavelength, the strongest signal was obtained from the 82-nm particles; the lowest intensity of the CLSM backscattered signal was detected from the cells labeled with the smallest NSts. Thus, by tuning the initial concentration of seeds, it is possible to adjust the size (and scattering properties) of the nanostars to the operating wavelength of the optical device to achieve the best performance.</description><subject>Biophotonics</subject><subject>cellular biophysics</subject><subject>confocal laser scanning microscopy</subject><subject>Gold</subject><subject>gold nanostars</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>optical coherence tomography</subject><subject>plasmon-resonant nanoparticles</subject><subject>Scattering</subject><subject>spectroscopy</subject><subject>Suspensions</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDpl7CaOs6yqUooqXi2PFZaT2MVVagfbXcDXk1LEamZxzx3NQeicwIAQKK5uF8vHyYACYQOaUcaAHqAeyTKepFlKD7sd8jyhDN6O0UkIawDgKYceen9oZNg4mzyp4Ky0EU9dU-M7aV2I0gf8auIHfpHeyLJReGG-FZYBj52NXoaIRytlY8DaeTzbyJWxKzxq28ZUMhpnwyk60rIJ6uxv9tHz9WQ5vknm99PZeDRPKkogJjwdKkU0o4pVsmZKy4KRos6hyimpCpmVivK6e4xXmpWsLjQwrnSZAWdlRwz76HLf23r3uVUhirXbetudFCTnOeGcEehSdJ-qvAvBKy1abzbSfwkCYudR_HoUO4_iz2MHXewho5T6B_IUoBjS4Q-AF3AY</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Bibikova, Olga</creator><creator>Popov, Alexey</creator><creator>Bykov, Alexander</creator><creator>Fales, Andrew</creator><creator>Hsiangkuo Yuan</creator><creator>Skovorodkin, Ilya</creator><creator>Kinnunen, Matti</creator><creator>Vainio, Seppo</creator><creator>Tuan Vo-Dinh</creator><creator>Tuchin, Valery V.</creator><creator>Meglinski, Igor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Plasmon-Resonant Gold Nanostars With Variable Size as Contrast Agents for Imaging Applications</title><author>Bibikova, Olga ; Popov, Alexey ; Bykov, Alexander ; Fales, Andrew ; Hsiangkuo Yuan ; Skovorodkin, Ilya ; Kinnunen, Matti ; Vainio, Seppo ; Tuan Vo-Dinh ; Tuchin, Valery V. ; Meglinski, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-843ee1f62e6cad6efa9619d70c721c9a5be28d5268cf6b6d9f068efb5086bcad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biophotonics</topic><topic>cellular biophysics</topic><topic>confocal laser scanning microscopy</topic><topic>Gold</topic><topic>gold nanostars</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>optical coherence tomography</topic><topic>plasmon-resonant nanoparticles</topic><topic>Scattering</topic><topic>spectroscopy</topic><topic>Suspensions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bibikova, Olga</creatorcontrib><creatorcontrib>Popov, Alexey</creatorcontrib><creatorcontrib>Bykov, Alexander</creatorcontrib><creatorcontrib>Fales, Andrew</creatorcontrib><creatorcontrib>Hsiangkuo Yuan</creatorcontrib><creatorcontrib>Skovorodkin, Ilya</creatorcontrib><creatorcontrib>Kinnunen, Matti</creatorcontrib><creatorcontrib>Vainio, Seppo</creatorcontrib><creatorcontrib>Tuan Vo-Dinh</creatorcontrib><creatorcontrib>Tuchin, Valery V.</creatorcontrib><creatorcontrib>Meglinski, Igor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bibikova, Olga</au><au>Popov, Alexey</au><au>Bykov, Alexander</au><au>Fales, Andrew</au><au>Hsiangkuo Yuan</au><au>Skovorodkin, Ilya</au><au>Kinnunen, Matti</au><au>Vainio, Seppo</au><au>Tuan Vo-Dinh</au><au>Tuchin, Valery V.</au><au>Meglinski, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon-Resonant Gold Nanostars With Variable Size as Contrast Agents for Imaging Applications</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>22</volume><issue>3</issue><spage>13</spage><epage>20</epage><pages>13-20</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Plasmon-resonant nanostars (NSts) have recently found applications in biophotonics due to their unique optical and chemical characteristics, showing comparable or superior properties than other anisotropic plasmon-resonant nanoparticles. In this paper, we synthesized gold NSts by the seed-mediated surfactant-free method. By varying the diameters and amount of spherical seeds we tuned the final NSts tip-to-tip sizes to 50, 82, 100, and 120 nm ensuring the plasmon-resonant peak location between 710 and 830 nm, and the scattering/absorption ratio at the plasmon-resonant wavelengths being 0.12, 0.25, 0.30, 0.35 correspondingly. We investigated the application of the NSts as contrast agents for imaging techniques operating at visible and infrared wavelengths: optical coherence tomography (OCT) and Doppler OCT with the spectrum centered at 930-nm wavelength, as well as for conventional confocal laser scanning microscopy (CLSM) working at 633 nm. The most intense OCT signal was registered from the largest NSts, in correspondence with spectroscopy measurements at 930-nm wavelength. For imaging of nanoparticles incubated with living cells, we applied CLSM in combined scattering and transmission modes, and observed localization of the NSts on the cell surface. Due to the highest scattering at the CLSM operating wavelength, the strongest signal was obtained from the 82-nm particles; the lowest intensity of the CLSM backscattered signal was detected from the cells labeled with the smallest NSts. Thus, by tuning the initial concentration of seeds, it is possible to adjust the size (and scattering properties) of the nanostars to the operating wavelength of the optical device to achieve the best performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2016.2526602</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2016-05, Vol.22 (3), p.13-20
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_journals_1787188610
source IEEE Electronic Library (IEL)
subjects Biophotonics
cellular biophysics
confocal laser scanning microscopy
Gold
gold nanostars
Microscopy
Nanoparticles
optical coherence tomography
plasmon-resonant nanoparticles
Scattering
spectroscopy
Suspensions
title Plasmon-Resonant Gold Nanostars With Variable Size as Contrast Agents for Imaging Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon-Resonant%20Gold%20Nanostars%20With%20Variable%20Size%20as%20Contrast%20Agents%20for%20Imaging%20Applications&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Bibikova,%20Olga&rft.date=2016-05-01&rft.volume=22&rft.issue=3&rft.spage=13&rft.epage=20&rft.pages=13-20&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2016.2526602&rft_dat=%3Cproquest_RIE%3E4047165991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787188610&rft_id=info:pmid/&rft_ieee_id=7400932&rfr_iscdi=true