Inspired by nature
Designed proteins have structural features resembling those of natural active sites Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory ( 1 – 5 ). These designer proteins had the sa...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2016-05, Vol.352 (6286), p.657-658 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | 6286 |
container_start_page | 657 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 352 |
creator | Netzer, Ravit Fleishman, Sarel J. |
description | Designed proteins have structural features resembling those of natural active sites
Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory (
1
–
5
). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken
et al.
(
6
) and Jacobs
et al.
(
7
) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability. |
doi_str_mv | 10.1126/science.aaf7599 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1787150083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24744494</jstor_id><sourcerecordid>24744494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</originalsourceid><addsrcrecordid>eNo9jz1LxEAURQdRcF1tbKyEBevsvsl8l7K4urBgo_UwmXkDCZrEmaTYf28kweoV79x7OYQ8UNhSWspd9jW2HrfORSWMuSArCkYUpgR2SVYATBYalLgmNzk3ANPPsBW5P7a5rxOGTXXetG4YE96Sq-i-Mt4td00-Dy8f-7fi9P563D-fCl_KciiYBw_MS8RpAZmkXFZBUqpdFKDAcC8CRpQxaKFLVjkKaAIDBK8CjcjW5Gnu7VP3M2IebNONqZ0mLVVaUQGg2UTtZsqnLueE0fap_nbpbCnYP3G7iNtFfEo8zokmD136x0uuOOeGs187UVWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787150083</pqid></control><display><type>article</type><title>Inspired by nature</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Netzer, Ravit ; Fleishman, Sarel J.</creator><creatorcontrib>Netzer, Ravit ; Fleishman, Sarel J.</creatorcontrib><description>Designed proteins have structural features resembling those of natural active sites
Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory (
1
–
5
). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken
et al.
(
6
) and Jacobs
et al.
(
7
) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf7599</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Computer based modeling ; PERSPECTIVES ; Protein folding</subject><ispartof>Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.657-658</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</citedby><cites>FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24744494$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24744494$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Netzer, Ravit</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><title>Inspired by nature</title><title>Science (American Association for the Advancement of Science)</title><description>Designed proteins have structural features resembling those of natural active sites
Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory (
1
–
5
). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken
et al.
(
6
) and Jacobs
et al.
(
7
) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability.</description><subject>Computer based modeling</subject><subject>PERSPECTIVES</subject><subject>Protein folding</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9jz1LxEAURQdRcF1tbKyEBevsvsl8l7K4urBgo_UwmXkDCZrEmaTYf28kweoV79x7OYQ8UNhSWspd9jW2HrfORSWMuSArCkYUpgR2SVYATBYalLgmNzk3ANPPsBW5P7a5rxOGTXXetG4YE96Sq-i-Mt4td00-Dy8f-7fi9P563D-fCl_KciiYBw_MS8RpAZmkXFZBUqpdFKDAcC8CRpQxaKFLVjkKaAIDBK8CjcjW5Gnu7VP3M2IebNONqZ0mLVVaUQGg2UTtZsqnLueE0fap_nbpbCnYP3G7iNtFfEo8zokmD136x0uuOOeGs187UVWz</recordid><startdate>20160506</startdate><enddate>20160506</enddate><creator>Netzer, Ravit</creator><creator>Fleishman, Sarel J.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20160506</creationdate><title>Inspired by nature</title><author>Netzer, Ravit ; Fleishman, Sarel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer based modeling</topic><topic>PERSPECTIVES</topic><topic>Protein folding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Netzer, Ravit</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Netzer, Ravit</au><au>Fleishman, Sarel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inspired by nature</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2016-05-06</date><risdate>2016</risdate><volume>352</volume><issue>6286</issue><spage>657</spage><epage>658</epage><pages>657-658</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Designed proteins have structural features resembling those of natural active sites
Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory (
1
–
5
). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken
et al.
(
6
) and Jacobs
et al.
(
7
) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.aaf7599</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.657-658 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_journals_1787150083 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Computer based modeling PERSPECTIVES Protein folding |
title | Inspired by nature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inspired%20by%20nature&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Netzer,%20Ravit&rft.date=2016-05-06&rft.volume=352&rft.issue=6286&rft.spage=657&rft.epage=658&rft.pages=657-658&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf7599&rft_dat=%3Cjstor_proqu%3E24744494%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787150083&rft_id=info:pmid/&rft_jstor_id=24744494&rfr_iscdi=true |