Inspired by nature

Designed proteins have structural features resembling those of natural active sites Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory ( 1 – 5 ). These designer proteins had the sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2016-05, Vol.352 (6286), p.657-658
Hauptverfasser: Netzer, Ravit, Fleishman, Sarel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 658
container_issue 6286
container_start_page 657
container_title Science (American Association for the Advancement of Science)
container_volume 352
creator Netzer, Ravit
Fleishman, Sarel J.
description Designed proteins have structural features resembling those of natural active sites Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory ( 1 – 5 ). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken et al. ( 6 ) and Jacobs et al. ( 7 ) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability.
doi_str_mv 10.1126/science.aaf7599
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1787150083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24744494</jstor_id><sourcerecordid>24744494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</originalsourceid><addsrcrecordid>eNo9jz1LxEAURQdRcF1tbKyEBevsvsl8l7K4urBgo_UwmXkDCZrEmaTYf28kweoV79x7OYQ8UNhSWspd9jW2HrfORSWMuSArCkYUpgR2SVYATBYalLgmNzk3ANPPsBW5P7a5rxOGTXXetG4YE96Sq-i-Mt4td00-Dy8f-7fi9P563D-fCl_KciiYBw_MS8RpAZmkXFZBUqpdFKDAcC8CRpQxaKFLVjkKaAIDBK8CjcjW5Gnu7VP3M2IebNONqZ0mLVVaUQGg2UTtZsqnLueE0fap_nbpbCnYP3G7iNtFfEo8zokmD136x0uuOOeGs187UVWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787150083</pqid></control><display><type>article</type><title>Inspired by nature</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Netzer, Ravit ; Fleishman, Sarel J.</creator><creatorcontrib>Netzer, Ravit ; Fleishman, Sarel J.</creatorcontrib><description>Designed proteins have structural features resembling those of natural active sites Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory ( 1 – 5 ). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken et al. ( 6 ) and Jacobs et al. ( 7 ) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf7599</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Computer based modeling ; PERSPECTIVES ; Protein folding</subject><ispartof>Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.657-658</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</citedby><cites>FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24744494$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24744494$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Netzer, Ravit</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><title>Inspired by nature</title><title>Science (American Association for the Advancement of Science)</title><description>Designed proteins have structural features resembling those of natural active sites Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory ( 1 – 5 ). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken et al. ( 6 ) and Jacobs et al. ( 7 ) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability.</description><subject>Computer based modeling</subject><subject>PERSPECTIVES</subject><subject>Protein folding</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9jz1LxEAURQdRcF1tbKyEBevsvsl8l7K4urBgo_UwmXkDCZrEmaTYf28kweoV79x7OYQ8UNhSWspd9jW2HrfORSWMuSArCkYUpgR2SVYATBYalLgmNzk3ANPPsBW5P7a5rxOGTXXetG4YE96Sq-i-Mt4td00-Dy8f-7fi9P563D-fCl_KciiYBw_MS8RpAZmkXFZBUqpdFKDAcC8CRpQxaKFLVjkKaAIDBK8CjcjW5Gnu7VP3M2IebNONqZ0mLVVaUQGg2UTtZsqnLueE0fap_nbpbCnYP3G7iNtFfEo8zokmD136x0uuOOeGs187UVWz</recordid><startdate>20160506</startdate><enddate>20160506</enddate><creator>Netzer, Ravit</creator><creator>Fleishman, Sarel J.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20160506</creationdate><title>Inspired by nature</title><author>Netzer, Ravit ; Fleishman, Sarel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-3c0c03c6ee203e36146bd6118af507094c5defe6fd85823ba10e9d30e0c7d1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer based modeling</topic><topic>PERSPECTIVES</topic><topic>Protein folding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Netzer, Ravit</creatorcontrib><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Netzer, Ravit</au><au>Fleishman, Sarel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inspired by nature</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2016-05-06</date><risdate>2016</risdate><volume>352</volume><issue>6286</issue><spage>657</spage><epage>658</epage><pages>657-658</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Designed proteins have structural features resembling those of natural active sites Over the past decade, scientists have made exciting progress in designing protein folds entirely on the computer and then successfully synthesizing them in the laboratory ( 1 – 5 ). These designer proteins had the same structure in experiment as in the model and were very stable; however, they lacked important structural features seen in protein interfaces and enzyme active sites. In two reports on pages 680 and 687 of this issue, Boyken et al. ( 6 ) and Jacobs et al. ( 7 ) use the Rosetta biomolecular modeling software to design proteins that include some of these features. Experiments show that these new designs retain high structural precision and stability.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.aaf7599</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.657-658
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_journals_1787150083
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Computer based modeling
PERSPECTIVES
Protein folding
title Inspired by nature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inspired%20by%20nature&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Netzer,%20Ravit&rft.date=2016-05-06&rft.volume=352&rft.issue=6286&rft.spage=657&rft.epage=658&rft.pages=657-658&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf7599&rft_dat=%3Cjstor_proqu%3E24744494%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787150083&rft_id=info:pmid/&rft_jstor_id=24744494&rfr_iscdi=true