An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection

Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2016-04, Vol.13 (4), p.535-539
Hauptverfasser: Quan, Xiangyin, Zhang, Bingchen, Liu, Jian Guo, Wu, Yirong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 4
container_start_page 535
container_title IEEE geoscience and remote sensing letters
container_volume 13
creator Quan, Xiangyin
Zhang, Bingchen
Liu, Jian Guo
Wu, Yirong
description Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing.
doi_str_mv 10.1109/LGRS.2016.2522769
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787029364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7407301</ieee_id><sourcerecordid>1816035792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsFZ_gHgJePHSmo_NJuttLbUKFcUP9Bay2dmaul8mW9B_b5YWD55mYJ535h3eKDoleEoITi-Xi6fnKcUkmVJOqUjSvWhEOJcTzAXZH_qYT3gq3w-jI-_XGNNYSjGKuqxB87K0xkLTowU04HSFsmrVOtt_1KhsHXrOntBdrVe2WV2hWVt3FXyjrOtc-21r3QO6B-_1CtCj9j5AA5PbBgr0Fnaga20-A7sG09u2OY4OSl15ONnVcfR6M3-Z3U6WD4u7WbacGJYmfbAqWJHESS5ybUwpcZETgQvIJYslxiYtGOWMkzglYco01kIayLWksckTItk4utjuDae_NuB7VVtvoKp0A-3GKyJJghkXKQ3o-T903W5cE9wpIqTANGVJHCiypYxrvXdQqs6F992PIlgNGaghAzVkoHYZBM3ZVmMB4I8XMRYME_YLJJ6Cfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787029364</pqid></control><display><type>article</type><title>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</title><source>IEEE Electronic Library (IEL)</source><creator>Quan, Xiangyin ; Zhang, Bingchen ; Liu, Jian Guo ; Wu, Yirong</creator><creatorcontrib>Quan, Xiangyin ; Zhang, Bingchen ; Liu, Jian Guo ; Wu, Yirong</creatorcontrib><description>Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2522769</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation algorithms ; Azimuth ; Backprojection ; complex approximate message passing algorithm (CAMP) ; Computation ; Data processing ; Fourier transforms ; Image reconstruction ; Imaging ; Message passing ; Operators ; Radar imaging ; Radar polarimetry ; range-azimuth decoupled operator (RADOp) ; Signal processing algorithms ; sparse reconstruction algorithm (SRA) ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.535-539</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</citedby><cites>FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7407301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7407301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quan, Xiangyin</creatorcontrib><creatorcontrib>Zhang, Bingchen</creatorcontrib><creatorcontrib>Liu, Jian Guo</creatorcontrib><creatorcontrib>Wu, Yirong</creatorcontrib><title>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Azimuth</subject><subject>Backprojection</subject><subject>complex approximate message passing algorithm (CAMP)</subject><subject>Computation</subject><subject>Data processing</subject><subject>Fourier transforms</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Message passing</subject><subject>Operators</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>range-azimuth decoupled operator (RADOp)</subject><subject>Signal processing algorithms</subject><subject>sparse reconstruction algorithm (SRA)</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhhdRsFZ_gHgJePHSmo_NJuttLbUKFcUP9Bay2dmaul8mW9B_b5YWD55mYJ535h3eKDoleEoITi-Xi6fnKcUkmVJOqUjSvWhEOJcTzAXZH_qYT3gq3w-jI-_XGNNYSjGKuqxB87K0xkLTowU04HSFsmrVOtt_1KhsHXrOntBdrVe2WV2hWVt3FXyjrOtc-21r3QO6B-_1CtCj9j5AA5PbBgr0Fnaga20-A7sG09u2OY4OSl15ONnVcfR6M3-Z3U6WD4u7WbacGJYmfbAqWJHESS5ybUwpcZETgQvIJYslxiYtGOWMkzglYco01kIayLWksckTItk4utjuDae_NuB7VVtvoKp0A-3GKyJJghkXKQ3o-T903W5cE9wpIqTANGVJHCiypYxrvXdQqs6F992PIlgNGaghAzVkoHYZBM3ZVmMB4I8XMRYME_YLJJ6Cfg</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Quan, Xiangyin</creator><creator>Zhang, Bingchen</creator><creator>Liu, Jian Guo</creator><creator>Wu, Yirong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201604</creationdate><title>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</title><author>Quan, Xiangyin ; Zhang, Bingchen ; Liu, Jian Guo ; Wu, Yirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Azimuth</topic><topic>Backprojection</topic><topic>complex approximate message passing algorithm (CAMP)</topic><topic>Computation</topic><topic>Data processing</topic><topic>Fourier transforms</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Message passing</topic><topic>Operators</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>range-azimuth decoupled operator (RADOp)</topic><topic>Signal processing algorithms</topic><topic>sparse reconstruction algorithm (SRA)</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Xiangyin</creatorcontrib><creatorcontrib>Zhang, Bingchen</creatorcontrib><creatorcontrib>Liu, Jian Guo</creatorcontrib><creatorcontrib>Wu, Yirong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quan, Xiangyin</au><au>Zhang, Bingchen</au><au>Liu, Jian Guo</au><au>Wu, Yirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-04</date><risdate>2016</risdate><volume>13</volume><issue>4</issue><spage>535</spage><epage>539</epage><pages>535-539</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2522769</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.535-539
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1787029364
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation
Approximation algorithms
Azimuth
Backprojection
complex approximate message passing algorithm (CAMP)
Computation
Data processing
Fourier transforms
Image reconstruction
Imaging
Message passing
Operators
Radar imaging
Radar polarimetry
range-azimuth decoupled operator (RADOp)
Signal processing algorithms
sparse reconstruction algorithm (SRA)
Synthetic aperture radar
synthetic aperture radar (SAR)
title An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20General%20Algorithm%20for%20SAR%20Imaging:%20Complex%20Approximate%20Message%20Passing%20Combined%20With%20Backprojection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Quan,%20Xiangyin&rft.date=2016-04&rft.volume=13&rft.issue=4&rft.spage=535&rft.epage=539&rft.pages=535-539&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2522769&rft_dat=%3Cproquest_RIE%3E1816035792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787029364&rft_id=info:pmid/&rft_ieee_id=7407301&rfr_iscdi=true