An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection
Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2016-04, Vol.13 (4), p.535-539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 4 |
container_start_page | 535 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 13 |
creator | Quan, Xiangyin Zhang, Bingchen Liu, Jian Guo Wu, Yirong |
description | Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing. |
doi_str_mv | 10.1109/LGRS.2016.2522769 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787029364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7407301</ieee_id><sourcerecordid>1816035792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsFZ_gHgJePHSmo_NJuttLbUKFcUP9Bay2dmaul8mW9B_b5YWD55mYJ535h3eKDoleEoITi-Xi6fnKcUkmVJOqUjSvWhEOJcTzAXZH_qYT3gq3w-jI-_XGNNYSjGKuqxB87K0xkLTowU04HSFsmrVOtt_1KhsHXrOntBdrVe2WV2hWVt3FXyjrOtc-21r3QO6B-_1CtCj9j5AA5PbBgr0Fnaga20-A7sG09u2OY4OSl15ONnVcfR6M3-Z3U6WD4u7WbacGJYmfbAqWJHESS5ybUwpcZETgQvIJYslxiYtGOWMkzglYco01kIayLWksckTItk4utjuDae_NuB7VVtvoKp0A-3GKyJJghkXKQ3o-T903W5cE9wpIqTANGVJHCiypYxrvXdQqs6F992PIlgNGaghAzVkoHYZBM3ZVmMB4I8XMRYME_YLJJ6Cfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787029364</pqid></control><display><type>article</type><title>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</title><source>IEEE Electronic Library (IEL)</source><creator>Quan, Xiangyin ; Zhang, Bingchen ; Liu, Jian Guo ; Wu, Yirong</creator><creatorcontrib>Quan, Xiangyin ; Zhang, Bingchen ; Liu, Jian Guo ; Wu, Yirong</creatorcontrib><description>Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2522769</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation algorithms ; Azimuth ; Backprojection ; complex approximate message passing algorithm (CAMP) ; Computation ; Data processing ; Fourier transforms ; Image reconstruction ; Imaging ; Message passing ; Operators ; Radar imaging ; Radar polarimetry ; range-azimuth decoupled operator (RADOp) ; Signal processing algorithms ; sparse reconstruction algorithm (SRA) ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.535-539</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</citedby><cites>FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7407301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7407301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quan, Xiangyin</creatorcontrib><creatorcontrib>Zhang, Bingchen</creatorcontrib><creatorcontrib>Liu, Jian Guo</creatorcontrib><creatorcontrib>Wu, Yirong</creatorcontrib><title>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Azimuth</subject><subject>Backprojection</subject><subject>complex approximate message passing algorithm (CAMP)</subject><subject>Computation</subject><subject>Data processing</subject><subject>Fourier transforms</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Message passing</subject><subject>Operators</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>range-azimuth decoupled operator (RADOp)</subject><subject>Signal processing algorithms</subject><subject>sparse reconstruction algorithm (SRA)</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhhdRsFZ_gHgJePHSmo_NJuttLbUKFcUP9Bay2dmaul8mW9B_b5YWD55mYJ535h3eKDoleEoITi-Xi6fnKcUkmVJOqUjSvWhEOJcTzAXZH_qYT3gq3w-jI-_XGNNYSjGKuqxB87K0xkLTowU04HSFsmrVOtt_1KhsHXrOntBdrVe2WV2hWVt3FXyjrOtc-21r3QO6B-_1CtCj9j5AA5PbBgr0Fnaga20-A7sG09u2OY4OSl15ONnVcfR6M3-Z3U6WD4u7WbacGJYmfbAqWJHESS5ybUwpcZETgQvIJYslxiYtGOWMkzglYco01kIayLWksckTItk4utjuDae_NuB7VVtvoKp0A-3GKyJJghkXKQ3o-T903W5cE9wpIqTANGVJHCiypYxrvXdQqs6F992PIlgNGaghAzVkoHYZBM3ZVmMB4I8XMRYME_YLJJ6Cfg</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Quan, Xiangyin</creator><creator>Zhang, Bingchen</creator><creator>Liu, Jian Guo</creator><creator>Wu, Yirong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201604</creationdate><title>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</title><author>Quan, Xiangyin ; Zhang, Bingchen ; Liu, Jian Guo ; Wu, Yirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5973d646b7baccf80db170deb834800c9d325351491cf83a0a78ceba824cb6183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Azimuth</topic><topic>Backprojection</topic><topic>complex approximate message passing algorithm (CAMP)</topic><topic>Computation</topic><topic>Data processing</topic><topic>Fourier transforms</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Message passing</topic><topic>Operators</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>range-azimuth decoupled operator (RADOp)</topic><topic>Signal processing algorithms</topic><topic>sparse reconstruction algorithm (SRA)</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Xiangyin</creatorcontrib><creatorcontrib>Zhang, Bingchen</creatorcontrib><creatorcontrib>Liu, Jian Guo</creatorcontrib><creatorcontrib>Wu, Yirong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quan, Xiangyin</au><au>Zhang, Bingchen</au><au>Liu, Jian Guo</au><au>Wu, Yirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-04</date><risdate>2016</risdate><volume>13</volume><issue>4</issue><spage>535</spage><epage>539</epage><pages>535-539</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Due to the great computation load and memory cost of the matrix-vector multiplication, the sparse reconstruction algorithms are severely limited in the applications of radar imaging with real data. In order to solve this problem, we construct a backprojection-based range-azimuth decoupled operator (BP-RADOp) and combine the complex approximate message passing algorithm (CAMP) with it. We call this algorithm BP-CAMP in this letter. Since BP-RADOp retains the merits of the backprojection method entirely (i.e., perfect motion compensation for any flight path, precise focus for arbitrarily wide bandwidths and integration angles, low artifact levels, unlimited scene size, and strictly local processing), it has universal applicability in comparison with the other decoupled operators deduced from the fast Fourier transform-based image formation algorithms. The theoretical analysis indicates when BP-CAMP and CAMP are both used to reconstruct large-scale observed scenes; the former has lower computation load and memory cost than the latter. Meanwhile, it is demonstrated that BP-CAMP achieves high-quality synthetic aperture radar imaging with undersampled echo data, and it is as robust as CAMP to additive noise by the simulations and real data processing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2522769</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.535-539 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_1787029364 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation Approximation algorithms Azimuth Backprojection complex approximate message passing algorithm (CAMP) Computation Data processing Fourier transforms Image reconstruction Imaging Message passing Operators Radar imaging Radar polarimetry range-azimuth decoupled operator (RADOp) Signal processing algorithms sparse reconstruction algorithm (SRA) Synthetic aperture radar synthetic aperture radar (SAR) |
title | An Efficient General Algorithm for SAR Imaging: Complex Approximate Message Passing Combined With Backprojection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20General%20Algorithm%20for%20SAR%20Imaging:%20Complex%20Approximate%20Message%20Passing%20Combined%20With%20Backprojection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Quan,%20Xiangyin&rft.date=2016-04&rft.volume=13&rft.issue=4&rft.spage=535&rft.epage=539&rft.pages=535-539&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2522769&rft_dat=%3Cproquest_RIE%3E1816035792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787029364&rft_id=info:pmid/&rft_ieee_id=7407301&rfr_iscdi=true |