Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction

Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switchin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2016-04, Vol.63 (4), p.1762-1767
Hauptverfasser: You Wang, Hao Cai, De Barros Naviner, Lirida Alves, Yue Zhang, Xiaoxuan Zhao, Deng, Erya, Klein, Jacques-Olivier, Weisheng Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1767
container_issue 4
container_start_page 1762
container_title IEEE transactions on electron devices
container_volume 63
creator You Wang
Hao Cai
De Barros Naviner, Lirida Alves
Yue Zhang
Xiaoxuan Zhao
Deng, Erya
Klein, Jacques-Olivier
Weisheng Zhao
description Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (~1 nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits.
doi_str_mv 10.1109/TED.2016.2533438
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787012136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428914</ieee_id><sourcerecordid>4046109291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4f092a3a2e9e5cd377118bc35bf4786d3b24fd257a9611cd1d40cddb3a74901f3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7FEYmJI8dlOnIzQFgpqxUBgtRzbgZTUDk4C4t_jqlWn053ed_r0ELoEPAHA-W0xn00IhnRCEkoZzY7QCJKEx3nK0mM0whiyOKcZPUVnXbcOa8oYGaH3qdu0UvXRymnTRK6KZrVpjOp9raJ7b-SXdr82qm302tY2Lry0XWV8VDj_PZhoJT-s6QNaDNaG_PNgVV87e45OKtl05mI_x-jtYV5MF_Hy5fFpereMVajYx6zCOZFUEpObRGnKOUBWKpqUFeNZqmlJWKVJwmWeAigNmmGldUklZzmGio7Rze7vp2xE6-uN9H_CyVos7pZie8NAIeM0_YHAXu_Y1rvQvevF2g3ehnoCeMYxEKBpoPCOUt51nTfV4S1gsTUtgmmxNS32pkPkahepjTEHnDOS5cDoP6N-eFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787012136</pqid></control><display><type>article</type><title>Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction</title><source>IEEE Electronic Library (IEL)</source><creator>You Wang ; Hao Cai ; De Barros Naviner, Lirida Alves ; Yue Zhang ; Xiaoxuan Zhao ; Deng, Erya ; Klein, Jacques-Olivier ; Weisheng Zhao</creator><creatorcontrib>You Wang ; Hao Cai ; De Barros Naviner, Lirida Alves ; Yue Zhang ; Xiaoxuan Zhao ; Deng, Erya ; Klein, Jacques-Olivier ; Weisheng Zhao</creatorcontrib><description>Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (~1 nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2016.2533438</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Breakdown probability ; Breakdown voltage ; Dielectric breakdown ; Engineering Sciences ; Integrated circuit modeling ; lifetime of magnetic tunnel junction (MTJ) ; Magnetic tunneling ; Micro and nanotechnologies ; Microelectronics ; reliability analysis ; Resistance ; Switches ; switching voltage margin ; Weibull distribution</subject><ispartof>IEEE transactions on electron devices, 2016-04, Vol.63 (4), p.1762-1767</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4f092a3a2e9e5cd377118bc35bf4786d3b24fd257a9611cd1d40cddb3a74901f3</citedby><cites>FETCH-LOGICAL-c438t-4f092a3a2e9e5cd377118bc35bf4786d3b24fd257a9611cd1d40cddb3a74901f3</cites><orcidid>0000-0002-6320-4153 ; 0000-0002-6917-2199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7428914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01318736$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>You Wang</creatorcontrib><creatorcontrib>Hao Cai</creatorcontrib><creatorcontrib>De Barros Naviner, Lirida Alves</creatorcontrib><creatorcontrib>Yue Zhang</creatorcontrib><creatorcontrib>Xiaoxuan Zhao</creatorcontrib><creatorcontrib>Deng, Erya</creatorcontrib><creatorcontrib>Klein, Jacques-Olivier</creatorcontrib><creatorcontrib>Weisheng Zhao</creatorcontrib><title>Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (~1 nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits.</description><subject>Breakdown probability</subject><subject>Breakdown voltage</subject><subject>Dielectric breakdown</subject><subject>Engineering Sciences</subject><subject>Integrated circuit modeling</subject><subject>lifetime of magnetic tunnel junction (MTJ)</subject><subject>Magnetic tunneling</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>reliability analysis</subject><subject>Resistance</subject><subject>Switches</subject><subject>switching voltage margin</subject><subject>Weibull distribution</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQRi0EEqWwI7FEYmJI8dlOnIzQFgpqxUBgtRzbgZTUDk4C4t_jqlWn053ed_r0ELoEPAHA-W0xn00IhnRCEkoZzY7QCJKEx3nK0mM0whiyOKcZPUVnXbcOa8oYGaH3qdu0UvXRymnTRK6KZrVpjOp9raJ7b-SXdr82qm302tY2Lry0XWV8VDj_PZhoJT-s6QNaDNaG_PNgVV87e45OKtl05mI_x-jtYV5MF_Hy5fFpereMVajYx6zCOZFUEpObRGnKOUBWKpqUFeNZqmlJWKVJwmWeAigNmmGldUklZzmGio7Rze7vp2xE6-uN9H_CyVos7pZie8NAIeM0_YHAXu_Y1rvQvevF2g3ehnoCeMYxEKBpoPCOUt51nTfV4S1gsTUtgmmxNS32pkPkahepjTEHnDOS5cDoP6N-eFw</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>You Wang</creator><creator>Hao Cai</creator><creator>De Barros Naviner, Lirida Alves</creator><creator>Yue Zhang</creator><creator>Xiaoxuan Zhao</creator><creator>Deng, Erya</creator><creator>Klein, Jacques-Olivier</creator><creator>Weisheng Zhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6320-4153</orcidid><orcidid>https://orcid.org/0000-0002-6917-2199</orcidid></search><sort><creationdate>201604</creationdate><title>Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction</title><author>You Wang ; Hao Cai ; De Barros Naviner, Lirida Alves ; Yue Zhang ; Xiaoxuan Zhao ; Deng, Erya ; Klein, Jacques-Olivier ; Weisheng Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4f092a3a2e9e5cd377118bc35bf4786d3b24fd257a9611cd1d40cddb3a74901f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Breakdown probability</topic><topic>Breakdown voltage</topic><topic>Dielectric breakdown</topic><topic>Engineering Sciences</topic><topic>Integrated circuit modeling</topic><topic>lifetime of magnetic tunnel junction (MTJ)</topic><topic>Magnetic tunneling</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>reliability analysis</topic><topic>Resistance</topic><topic>Switches</topic><topic>switching voltage margin</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You Wang</creatorcontrib><creatorcontrib>Hao Cai</creatorcontrib><creatorcontrib>De Barros Naviner, Lirida Alves</creatorcontrib><creatorcontrib>Yue Zhang</creatorcontrib><creatorcontrib>Xiaoxuan Zhao</creatorcontrib><creatorcontrib>Deng, Erya</creatorcontrib><creatorcontrib>Klein, Jacques-Olivier</creatorcontrib><creatorcontrib>Weisheng Zhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You Wang</au><au>Hao Cai</au><au>De Barros Naviner, Lirida Alves</au><au>Yue Zhang</au><au>Xiaoxuan Zhao</au><au>Deng, Erya</au><au>Klein, Jacques-Olivier</au><au>Weisheng Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2016-04</date><risdate>2016</risdate><volume>63</volume><issue>4</issue><spage>1762</spage><epage>1767</epage><pages>1762-1767</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (~1 nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2016.2533438</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6320-4153</orcidid><orcidid>https://orcid.org/0000-0002-6917-2199</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2016-04, Vol.63 (4), p.1762-1767
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_1787012136
source IEEE Electronic Library (IEL)
subjects Breakdown probability
Breakdown voltage
Dielectric breakdown
Engineering Sciences
Integrated circuit modeling
lifetime of magnetic tunnel junction (MTJ)
Magnetic tunneling
Micro and nanotechnologies
Microelectronics
reliability analysis
Resistance
Switches
switching voltage margin
Weibull distribution
title Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Model%20of%20Dielectric%20Breakdown%20in%20Spin-Transfer%20Torque%20Magnetic%20Tunnel%20Junction&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=You%20Wang&rft.date=2016-04&rft.volume=63&rft.issue=4&rft.spage=1762&rft.epage=1767&rft.pages=1762-1767&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2016.2533438&rft_dat=%3Cproquest_RIE%3E4046109291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787012136&rft_id=info:pmid/&rft_ieee_id=7428914&rfr_iscdi=true