Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes

The Gorkha earthquake (Nepal, 2015, M w 7.9) triggered many landslides. The most catastrophic mass movement was a debris avalanche that buried several villages in the Langtang valley. In this study, questions are raised about its volume and initiation. I investigate the possibility of high-resolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, planets, and space planets, and space, 2016-03, Vol.68 (1), p.1, Article 46
1. Verfasser: Lacroix, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gorkha earthquake (Nepal, 2015, M w 7.9) triggered many landslides. The most catastrophic mass movement was a debris avalanche that buried several villages in the Langtang valley. In this study, questions are raised about its volume and initiation. I investigate the possibility of high-resolution digital surface models computed from tri-stereo SPOT6/7 images to resolve this issue. This high-resolution dataset enables me to derive an inventory of 160 landslides triggered by this earthquake. I analyze the source of errors and estimate the uncertainties in the landslide volumes. The vegetation prevents to correctly estimate the volumes of landslides that occured in vegetated areas. However, I evaluate the volume and thickness of 73 landslides developing in vegetated-free areas, showing a power law between their surface areas and volumes with exponent of 1.20. Accumulations and depletion volumes are also well constrained for larger landslides, and I find that the main debris avalanches accumulated 6.95 × 10 6  m 3 of deposits in the valley with thicknesses reaching 60 m, and 9.66 × 10 6  m 3 in the glaciated part above 5000 m asl. The large amount of sediments is explained by an initiation of the debris avalanche due to serac falls and snow avalanches from five separate places between 6800 and 7200 m asl over 3 km length.
ISSN:1880-5981
1880-5981
DOI:10.1186/s40623-016-0423-3