Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2016-04, Vol.68 (4), p.1145-1155
Hauptverfasser: Yao, Shanshan, Zhu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1155
container_issue 4
container_start_page 1145
container_title JOM (1989)
container_volume 68
creator Yao, Shanshan
Zhu, Yong
description Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode–skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode–skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.
doi_str_mv 10.1007/s11837-016-1818-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1777746526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4007553871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4a171f7d69738239e57fddeaddb2bd9d9ea42310cbc04c3a2f399ebfe69a96b53</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeCz9HcJm0a38bcVBgT_PMc0uZ2dnTNTDpl396MKvjifbn3wPmdC4eQS2DXwJi8CQAFl5RBTqGAgrIjMoJM8KgyOI43E5KKghen5CyENYuMUDAiy6Xp3Mb06BvT0llnyhZtcuf3yazFqvfOYkhq53_l9n0fGte6VVOZNnnBLjTd6jaZJM_42eDXOTmpTRvw4mePydt89jp9oIun-8fpZEErXqQ9FQYk1NLmSkbNFWaythaNtWVaWmUVGpFyYFVZMVFxk9ZcKSxrzJVReZnxMbkacrfefeww9Hrtdr6LLzXIOCLP0jy6YHBV3oXgsdZb32yM32tg-lCbHmrTsTZ9qE2zyKQDE6K3W6H_k_wv9A1pb3CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777746526</pqid></control><display><type>article</type><title>Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review</title><source>SpringerLink Journals</source><creator>Yao, Shanshan ; Zhu, Yong</creator><creatorcontrib>Yao, Shanshan ; Zhu, Yong</creatorcontrib><description>Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode–skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode–skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-016-1818-0</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cardiovascular disease ; Chemistry/Food Science ; Earth Sciences ; Electric currents ; Electrocardiography ; Electrodes ; Electrolytes ; Engineering ; Environment ; Humidity ; Nanomaterials ; Noise ; Physics ; Skin ; Studies</subject><ispartof>JOM (1989), 2016-04, Vol.68 (4), p.1145-1155</ispartof><rights>The Minerals, Metals &amp; Materials Society 2016</rights><rights>Copyright Springer Science &amp; Business Media Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4a171f7d69738239e57fddeaddb2bd9d9ea42310cbc04c3a2f399ebfe69a96b53</citedby><cites>FETCH-LOGICAL-c382t-4a171f7d69738239e57fddeaddb2bd9d9ea42310cbc04c3a2f399ebfe69a96b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-016-1818-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-016-1818-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yao, Shanshan</creatorcontrib><creatorcontrib>Zhu, Yong</creatorcontrib><title>Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode–skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode–skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.</description><subject>Cardiovascular disease</subject><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Electric currents</subject><subject>Electrocardiography</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Engineering</subject><subject>Environment</subject><subject>Humidity</subject><subject>Nanomaterials</subject><subject>Noise</subject><subject>Physics</subject><subject>Skin</subject><subject>Studies</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeCz9HcJm0a38bcVBgT_PMc0uZ2dnTNTDpl396MKvjifbn3wPmdC4eQS2DXwJi8CQAFl5RBTqGAgrIjMoJM8KgyOI43E5KKghen5CyENYuMUDAiy6Xp3Mb06BvT0llnyhZtcuf3yazFqvfOYkhq53_l9n0fGte6VVOZNnnBLjTd6jaZJM_42eDXOTmpTRvw4mePydt89jp9oIun-8fpZEErXqQ9FQYk1NLmSkbNFWaythaNtWVaWmUVGpFyYFVZMVFxk9ZcKSxrzJVReZnxMbkacrfefeww9Hrtdr6LLzXIOCLP0jy6YHBV3oXgsdZb32yM32tg-lCbHmrTsTZ9qE2zyKQDE6K3W6H_k_wv9A1pb3CA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Yao, Shanshan</creator><creator>Zhu, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160401</creationdate><title>Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review</title><author>Yao, Shanshan ; Zhu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4a171f7d69738239e57fddeaddb2bd9d9ea42310cbc04c3a2f399ebfe69a96b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cardiovascular disease</topic><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Electric currents</topic><topic>Electrocardiography</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Engineering</topic><topic>Environment</topic><topic>Humidity</topic><topic>Nanomaterials</topic><topic>Noise</topic><topic>Physics</topic><topic>Skin</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Shanshan</creatorcontrib><creatorcontrib>Zhu, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Shanshan</au><au>Zhu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>68</volume><issue>4</issue><spage>1145</spage><epage>1155</epage><pages>1145-1155</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode–skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode–skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-016-1818-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2016-04, Vol.68 (4), p.1145-1155
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_1777746526
source SpringerLink Journals
subjects Cardiovascular disease
Chemistry/Food Science
Earth Sciences
Electric currents
Electrocardiography
Electrodes
Electrolytes
Engineering
Environment
Humidity
Nanomaterials
Noise
Physics
Skin
Studies
title Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomaterial-Enabled%20Dry%20Electrodes%20for%20Electrophysiological%20Sensing:%20A%20Review&rft.jtitle=JOM%20(1989)&rft.au=Yao,%20Shanshan&rft.date=2016-04-01&rft.volume=68&rft.issue=4&rft.spage=1145&rft.epage=1155&rft.pages=1145-1155&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-016-1818-0&rft_dat=%3Cproquest_cross%3E4007553871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777746526&rft_id=info:pmid/&rfr_iscdi=true