Colour texture segmentation using evidence gathering
A new approach to colour-texture segmentation is presented which uses Local Binary Pattern data and a new colour quantisation scheme based on hue and saturation to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A3 |
container_title | |
container_volume | |
creator | Waller, B.M Nixon, M.S Carter, J.N |
description | A new approach to colour-texture segmentation is presented which uses Local Binary Pattern data and a new colour quantisation scheme based on hue and saturation to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform style R-tables as unique descriptors for each texture class. Tests on remotely sensed images demonstrate the superiority of the colour-texture algorithm compared to the established JSEG algorithm; a notable advantage of the new approach is the absence of over-segmentation. The VisTex database is used to compare the colour-texture algorithm with alternative methods, including its grey-scale equivalent, for the segmentation of colour texture images; providing good results with smooth texture boundaries and low noise within texture segments. (6 pages) |
doi_str_mv | 10.1049/cp.2012.0441 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_iet_c</sourceid><recordid>TN_cdi_proquest_journals_1776155609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4000931341</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1721-b3458f6dd2e89775cf1bc1c7a6174bbf12f23bf6da26c03d382641ed37a12d313</originalsourceid><addsrcrecordid>eNotkE1LxDAQhgMiKGtv_oCCR2nNJGnSHKX4BQte9BzadFK7rGltUvHnm7J7GmZ4eOflIeQWaAlU6Ac7l4wCK6kQcEEyrWqohQYtOYMrkoVwoJSmtdaUXRPRTMdpXfKIf3FdMA84fKOPbRwnn69h9EOOv2OP3mI-tPELl3S6IZeuPQbMznNHPp-fPprXYv_-8tY87osRFIOi46Kqnex7hrVWqrIOOgtWtRKU6DoHzDHeJaBl0lLe85pJAdhz1QLrOfAduTvlzsv0s2KI5pC6-vTSgFISqkpSnaj7EzViNHbyDpetbmKo2YwYO5vNiNmM8H9DN1P7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1776155609</pqid></control><display><type>conference_proceeding</type><title>Colour texture segmentation using evidence gathering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Waller, B.M ; Nixon, M.S ; Carter, J.N</creator><creatorcontrib>Waller, B.M ; Nixon, M.S ; Carter, J.N</creatorcontrib><description>A new approach to colour-texture segmentation is presented which uses Local Binary Pattern data and a new colour quantisation scheme based on hue and saturation to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform style R-tables as unique descriptors for each texture class. Tests on remotely sensed images demonstrate the superiority of the colour-texture algorithm compared to the established JSEG algorithm; a notable advantage of the new approach is the absence of over-segmentation. The VisTex database is used to compare the colour-texture algorithm with alternative methods, including its grey-scale equivalent, for the segmentation of colour texture images; providing good results with smooth texture boundaries and low noise within texture segments. (6 pages)</description><identifier>ISBN: 9781849196321</identifier><identifier>ISBN: 184919632X</identifier><identifier>DOI: 10.1049/cp.2012.0441</identifier><language>eng</language><publisher>Stevenage, UK: IET</publisher><subject>Computer vision and image processing techniques ; Function theory, analysis ; Geophysical techniques and equipment ; Geophysics computing ; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research ; Integral transforms ; Optical, image and video signal processing</subject><ispartof>IET Conference on Image Processing (IPR 2012), 2012, p.A3</ispartof><rights>Copyright The Institution of Engineering & Technology Jul 3, 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,4035,4036,27904</link.rule.ids></links><search><creatorcontrib>Waller, B.M</creatorcontrib><creatorcontrib>Nixon, M.S</creatorcontrib><creatorcontrib>Carter, J.N</creatorcontrib><title>Colour texture segmentation using evidence gathering</title><title>IET Conference on Image Processing (IPR 2012)</title><description>A new approach to colour-texture segmentation is presented which uses Local Binary Pattern data and a new colour quantisation scheme based on hue and saturation to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform style R-tables as unique descriptors for each texture class. Tests on remotely sensed images demonstrate the superiority of the colour-texture algorithm compared to the established JSEG algorithm; a notable advantage of the new approach is the absence of over-segmentation. The VisTex database is used to compare the colour-texture algorithm with alternative methods, including its grey-scale equivalent, for the segmentation of colour texture images; providing good results with smooth texture boundaries and low noise within texture segments. (6 pages)</description><subject>Computer vision and image processing techniques</subject><subject>Function theory, analysis</subject><subject>Geophysical techniques and equipment</subject><subject>Geophysics computing</subject><subject>Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research</subject><subject>Integral transforms</subject><subject>Optical, image and video signal processing</subject><isbn>9781849196321</isbn><isbn>184919632X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkE1LxDAQhgMiKGtv_oCCR2nNJGnSHKX4BQte9BzadFK7rGltUvHnm7J7GmZ4eOflIeQWaAlU6Ac7l4wCK6kQcEEyrWqohQYtOYMrkoVwoJSmtdaUXRPRTMdpXfKIf3FdMA84fKOPbRwnn69h9EOOv2OP3mI-tPELl3S6IZeuPQbMznNHPp-fPprXYv_-8tY87osRFIOi46Kqnex7hrVWqrIOOgtWtRKU6DoHzDHeJaBl0lLe85pJAdhz1QLrOfAduTvlzsv0s2KI5pC6-vTSgFISqkpSnaj7EzViNHbyDpetbmKo2YwYO5vNiNmM8H9DN1P7</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Waller, B.M</creator><creator>Nixon, M.S</creator><creator>Carter, J.N</creator><general>IET</general><general>The Institution of Engineering & Technology</general><scope>8ET</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2012</creationdate><title>Colour texture segmentation using evidence gathering</title><author>Waller, B.M ; Nixon, M.S ; Carter, J.N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1721-b3458f6dd2e89775cf1bc1c7a6174bbf12f23bf6da26c03d382641ed37a12d313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer vision and image processing techniques</topic><topic>Function theory, analysis</topic><topic>Geophysical techniques and equipment</topic><topic>Geophysics computing</topic><topic>Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research</topic><topic>Integral transforms</topic><topic>Optical, image and video signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Waller, B.M</creatorcontrib><creatorcontrib>Nixon, M.S</creatorcontrib><creatorcontrib>Carter, J.N</creatorcontrib><collection>IET Conference Publications by volume</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waller, B.M</au><au>Nixon, M.S</au><au>Carter, J.N</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Colour texture segmentation using evidence gathering</atitle><btitle>IET Conference on Image Processing (IPR 2012)</btitle><date>2012</date><risdate>2012</risdate><spage>A3</spage><pages>A3-</pages><isbn>9781849196321</isbn><isbn>184919632X</isbn><abstract>A new approach to colour-texture segmentation is presented which uses Local Binary Pattern data and a new colour quantisation scheme based on hue and saturation to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform style R-tables as unique descriptors for each texture class. Tests on remotely sensed images demonstrate the superiority of the colour-texture algorithm compared to the established JSEG algorithm; a notable advantage of the new approach is the absence of over-segmentation. The VisTex database is used to compare the colour-texture algorithm with alternative methods, including its grey-scale equivalent, for the segmentation of colour texture images; providing good results with smooth texture boundaries and low noise within texture segments. (6 pages)</abstract><cop>Stevenage, UK</cop><pub>IET</pub><doi>10.1049/cp.2012.0441</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781849196321 |
ispartof | IET Conference on Image Processing (IPR 2012), 2012, p.A3 |
issn | |
language | eng |
recordid | cdi_proquest_journals_1776155609 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision and image processing techniques Function theory, analysis Geophysical techniques and equipment Geophysics computing Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Integral transforms Optical, image and video signal processing |
title | Colour texture segmentation using evidence gathering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iet_c&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Colour%20texture%20segmentation%20using%20evidence%20gathering&rft.btitle=IET%20Conference%20on%20Image%20Processing%20(IPR%202012)&rft.au=Waller,%20B.M&rft.date=2012&rft.spage=A3&rft.pages=A3-&rft.isbn=9781849196321&rft.isbn_list=184919632X&rft_id=info:doi/10.1049/cp.2012.0441&rft_dat=%3Cproquest_iet_c%3E4000931341%3C/proquest_iet_c%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776155609&rft_id=info:pmid/&rfr_iscdi=true |