Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study

Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation ( Δ f H 298 , g o ) values for a test set of 45 nitrogen-containing energetic compound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Physical Chemistry 2016-01, Vol.2016, p.53-63
Hauptverfasser: Elioff, Michael S., Hoy, Jordan, Bumpus, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue
container_start_page 53
container_title Advances in Physical Chemistry
container_volume 2016
creator Elioff, Michael S.
Hoy, Jordan
Bumpus, John A.
description Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation ( Δ f H 298 , g o ) values for a test set of 45 nitrogen-containing energetic compounds. Density functional theory coupled with the use of isodesmic or other balanced equations yielded calculated results in which 82% (37 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of the most recently recommended experimental/reference values available. This was compared to a procedure using density functional theory (DFT) coupled with an atom and group contribution method in which 51% (23 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of these values. The T1 procedure and Benson’s group additivity method yielded results in which 51% (23 of 45) and 64% (23 of 36) of the Δ f H 298 , g o values, respectively, were within ±2.0 kcal/mol of these values. We also compared two relatively new semiempirical approaches (PM7 and RM1) with regard to their ability to accurately calculate Δ f H 298 , g o . Although semiempirical methods continue to improve, they were found to be less accurate than the other approaches for the test set used in this investigation.
doi_str_mv 10.1155/2016/5082084
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1776058917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495831484</galeid><airiti_id>P20151214006_201612_201708290004_201708290004_53_63</airiti_id><sourcerecordid>A495831484</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-653267bf6fa4ffc071d3776ae3a3e3b1dc4e5d51a2d60c94db2d57f941c8464e3</originalsourceid><addsrcrecordid>eNqFkVlLAzEUhQdRsC5v_oABH7U2d7LN-FZK64JgweU1pFlqysykZmaU_nvTBUUQJA839_CdmxtOkpwBugKgdJAhYAOK8gzlZC_pAct5nxcF3v--5_QwOWqaBUKMYc57yXQkS9WVsnX1PL01sk29TSc-VFHxdfoqy840a21cmzA3rVPpyFdL39W6uU6Hm0aGCH-Y9Knt9OokObCybMzprh4nL5Px8-i2__B4czcaPvQl4dD2GcUZ4zPLrCTWKsRBx32YNFhig2egFTFUU5CZZkgVRM8yTbktCKicMGLwcXK-nbsM_j3u2IqF70IdnxQQByGaF8B_qLksjXC19W2QqnKNEkNS0BwDyUmkrv6g4tGmcsrXxrqo_zJcbg0q-KYJxoplcJUMKwFIrKMQ6yjELoqIX2zxN1dr-en-o--3tHTBte7nX9OIUciAxPQ2FsjWhUdfgRAivxuKBcP4C_0fmgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776058917</pqid></control><display><type>article</type><title>Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Elioff, Michael S. ; Hoy, Jordan ; Bumpus, John A.</creator><contributor>Salahub, Dennis</contributor><creatorcontrib>Elioff, Michael S. ; Hoy, Jordan ; Bumpus, John A. ; Salahub, Dennis</creatorcontrib><description>Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation ( Δ f H 298 , g o ) values for a test set of 45 nitrogen-containing energetic compounds. Density functional theory coupled with the use of isodesmic or other balanced equations yielded calculated results in which 82% (37 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of the most recently recommended experimental/reference values available. This was compared to a procedure using density functional theory (DFT) coupled with an atom and group contribution method in which 51% (23 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of these values. The T1 procedure and Benson’s group additivity method yielded results in which 51% (23 of 45) and 64% (23 of 36) of the Δ f H 298 , g o values, respectively, were within ±2.0 kcal/mol of these values. We also compared two relatively new semiempirical approaches (PM7 and RM1) with regard to their ability to accurately calculate Δ f H 298 , g o . Although semiempirical methods continue to improve, they were found to be less accurate than the other approaches for the test set used in this investigation.</description><identifier>ISSN: 1687-7985</identifier><identifier>EISSN: 1687-7993</identifier><identifier>DOI: 10.1155/2016/5082084</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Analysis ; Energetics ; Heat</subject><ispartof>Advances in Physical Chemistry, 2016-01, Vol.2016, p.53-63</ispartof><rights>Copyright © 2016 Michael S. Elioff et al.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Michael S. Elioff et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-653267bf6fa4ffc071d3776ae3a3e3b1dc4e5d51a2d60c94db2d57f941c8464e3</citedby><cites>FETCH-LOGICAL-a471t-653267bf6fa4ffc071d3776ae3a3e3b1dc4e5d51a2d60c94db2d57f941c8464e3</cites><orcidid>0000-0002-9222-7979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Salahub, Dennis</contributor><creatorcontrib>Elioff, Michael S.</creatorcontrib><creatorcontrib>Hoy, Jordan</creatorcontrib><creatorcontrib>Bumpus, John A.</creatorcontrib><title>Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study</title><title>Advances in Physical Chemistry</title><description>Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation ( Δ f H 298 , g o ) values for a test set of 45 nitrogen-containing energetic compounds. Density functional theory coupled with the use of isodesmic or other balanced equations yielded calculated results in which 82% (37 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of the most recently recommended experimental/reference values available. This was compared to a procedure using density functional theory (DFT) coupled with an atom and group contribution method in which 51% (23 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of these values. The T1 procedure and Benson’s group additivity method yielded results in which 51% (23 of 45) and 64% (23 of 36) of the Δ f H 298 , g o values, respectively, were within ±2.0 kcal/mol of these values. We also compared two relatively new semiempirical approaches (PM7 and RM1) with regard to their ability to accurately calculate Δ f H 298 , g o . Although semiempirical methods continue to improve, they were found to be less accurate than the other approaches for the test set used in this investigation.</description><subject>Analysis</subject><subject>Energetics</subject><subject>Heat</subject><issn>1687-7985</issn><issn>1687-7993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkVlLAzEUhQdRsC5v_oABH7U2d7LN-FZK64JgweU1pFlqysykZmaU_nvTBUUQJA839_CdmxtOkpwBugKgdJAhYAOK8gzlZC_pAct5nxcF3v--5_QwOWqaBUKMYc57yXQkS9WVsnX1PL01sk29TSc-VFHxdfoqy840a21cmzA3rVPpyFdL39W6uU6Hm0aGCH-Y9Knt9OokObCybMzprh4nL5Px8-i2__B4czcaPvQl4dD2GcUZ4zPLrCTWKsRBx32YNFhig2egFTFUU5CZZkgVRM8yTbktCKicMGLwcXK-nbsM_j3u2IqF70IdnxQQByGaF8B_qLksjXC19W2QqnKNEkNS0BwDyUmkrv6g4tGmcsrXxrqo_zJcbg0q-KYJxoplcJUMKwFIrKMQ6yjELoqIX2zxN1dr-en-o--3tHTBte7nX9OIUciAxPQ2FsjWhUdfgRAivxuKBcP4C_0fmgo</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Elioff, Michael S.</creator><creator>Hoy, Jordan</creator><creator>Bumpus, John A.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9222-7979</orcidid></search><sort><creationdate>20160101</creationdate><title>Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study</title><author>Elioff, Michael S. ; Hoy, Jordan ; Bumpus, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-653267bf6fa4ffc071d3776ae3a3e3b1dc4e5d51a2d60c94db2d57f941c8464e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Energetics</topic><topic>Heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elioff, Michael S.</creatorcontrib><creatorcontrib>Hoy, Jordan</creatorcontrib><creatorcontrib>Bumpus, John A.</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advances in Physical Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elioff, Michael S.</au><au>Hoy, Jordan</au><au>Bumpus, John A.</au><au>Salahub, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study</atitle><jtitle>Advances in Physical Chemistry</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><spage>53</spage><epage>63</epage><pages>53-63</pages><issn>1687-7985</issn><eissn>1687-7993</eissn><abstract>Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation ( Δ f H 298 , g o ) values for a test set of 45 nitrogen-containing energetic compounds. Density functional theory coupled with the use of isodesmic or other balanced equations yielded calculated results in which 82% (37 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of the most recently recommended experimental/reference values available. This was compared to a procedure using density functional theory (DFT) coupled with an atom and group contribution method in which 51% (23 of 45) of the Δ f H 298 , g o values were within ±2.0 kcal/mol of these values. The T1 procedure and Benson’s group additivity method yielded results in which 51% (23 of 45) and 64% (23 of 36) of the Δ f H 298 , g o values, respectively, were within ±2.0 kcal/mol of these values. We also compared two relatively new semiempirical approaches (PM7 and RM1) with regard to their ability to accurately calculate Δ f H 298 , g o . Although semiempirical methods continue to improve, they were found to be less accurate than the other approaches for the test set used in this investigation.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2016/5082084</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9222-7979</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-7985
ispartof Advances in Physical Chemistry, 2016-01, Vol.2016, p.53-63
issn 1687-7985
1687-7993
language eng
recordid cdi_proquest_journals_1776058917
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Analysis
Energetics
Heat
title Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculating%20Heat%20of%20Formation%20Values%20of%20Energetic%20Compounds:%20A%20Comparative%20Study&rft.jtitle=Advances%20in%20Physical%20Chemistry&rft.au=Elioff,%20Michael%20S.&rft.date=2016-01-01&rft.volume=2016&rft.spage=53&rft.epage=63&rft.pages=53-63&rft.issn=1687-7985&rft.eissn=1687-7993&rft_id=info:doi/10.1155/2016/5082084&rft_dat=%3Cgale_proqu%3EA495831484%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776058917&rft_id=info:pmid/&rft_galeid=A495831484&rft_airiti_id=P20151214006_201612_201708290004_201708290004_53_63&rfr_iscdi=true