Mineralogy and petrology of lunar meteorite Northwest Africa 2977 consisting of olivine cumulate gabbro including inverted pigeonite
Lunar meteorite Northwest Africa (NWA) 2977 is identified as an olivine cumulate gabbro (OC), consisting of coarse cumulate olivine crystals up to 1 mm with low-Ca and high-Ca pyroxenes, plagioclase, and interstitial incompatible element-rich pockets of K-feldspar, Ca-phosphates, ilmenite, and troil...
Gespeichert in:
Veröffentlicht in: | Earth, planets, and space planets, and space, 2015-12, Vol.67 (1), p.1, Article 200 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lunar meteorite Northwest Africa (NWA) 2977 is identified as an olivine cumulate gabbro (OC), consisting of coarse cumulate olivine crystals up to 1 mm with low-Ca and high-Ca pyroxenes, plagioclase, and interstitial incompatible element-rich pockets of K-feldspar, Ca-phosphates, ilmenite, and troilite. These minerals and textures are similar to those of the OC clasts of the NWA 773 clan of meteorites. NWA 2977 contains a variety of pyroxene textures and compositions including augite, pigeonite, and rare orthopyroxene, all having exsolution lamellae. Some of the orthopyroxene has abundant augite lamellae with compositions indicating formation by inversion of pigeonite. This pigeonite was inverted at 1140 °C according to the pigeonite eutectoid reaction (PER) temperatures. Inverted pigeonite has not been found previously in the NWA 773 clan of meteorites. The presence of inverted pigeonite indicates that NWA 2977 cooled more slowly than most other OC clasts of the NWA 773 clan. The relatively slow cooling of NWA 2977 can be explained by formation in a deeper level of the original igneous body of the NWA 773 clan OC lithology. |
---|---|
ISSN: | 1880-5981 1880-5981 |
DOI: | 10.1186/s40623-015-0368-y |