Air-blast anti-fouling cleaning for aquatic optical sensors

In order to solve the problem of fouling of submerged optical instruments, an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration (SSC) in natural waters. Laboratory experiments in a manually created fouling environment were conducte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of agricultural and biological engineering 2015-12, Vol.8 (6), p.128
Hauptverfasser: Yali, Zhang, Zhang, Naiqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 128
container_title International journal of agricultural and biological engineering
container_volume 8
creator Yali, Zhang
Zhang, Naiqian
description In order to solve the problem of fouling of submerged optical instruments, an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration (SSC) in natural waters. Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials, and to verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case, and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals. So the submerged optical instruments should avoid using metal materials. The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.
doi_str_mv 10.3965/j.ijabe.20150806.1853
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1773813025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3987279461</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-e45ae67a28dac65bd71b75a92d79a602cce41d14a5265d7f3002df98a58458fa3</originalsourceid><addsrcrecordid>eNo9jVFLwzAURoMoOKc_QSj4nJrk5iYpPo2hUxj4sj2P2yaRltJ0Tfv_nSi-nO88fYexRylKqAw-d2XbUR1KJSQKJ0wpHcIVW8kKNDeA6vrftb5ldzl3QhjtAFfsZdNOvO4pzwUNc8tjWvp2-CqaPtDwIzFNBZ0XmtumSOOF1Bc5DDlN-Z7dROpzePjbNTu-vR6273z_ufvYbvZ8lA5mHjRSMJaU89QYrL2VtUWqlLcVGaGaJmjppSZUBr2NIITysXKETqOLBGv29Ps7Tum8hDyfurRMwyV5ktaCkyAUwjeIzEu-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773813025</pqid></control><display><type>article</type><title>Air-blast anti-fouling cleaning for aquatic optical sensors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yali, Zhang ; Zhang, Naiqian</creator><creatorcontrib>Yali, Zhang ; Zhang, Naiqian</creatorcontrib><description>In order to solve the problem of fouling of submerged optical instruments, an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration (SSC) in natural waters. Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials, and to verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case, and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals. So the submerged optical instruments should avoid using metal materials. The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.</description><identifier>ISSN: 1934-6344</identifier><identifier>EISSN: 1934-6352</identifier><identifier>DOI: 10.3965/j.ijabe.20150806.1853</identifier><language>eng</language><publisher>Beijing: International Journal of Agricultural and Biological Engineering (IJABE)</publisher><subject>Algorithms ; Aluminum ; Design ; Light ; Polyethylene ; Salinity ; Sediment transport ; Sensors</subject><ispartof>International journal of agricultural and biological engineering, 2015-12, Vol.8 (6), p.128</ispartof><rights>Copyright International Journal of Agricultural and Biological Engineering (IJABE) Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Yali, Zhang</creatorcontrib><creatorcontrib>Zhang, Naiqian</creatorcontrib><title>Air-blast anti-fouling cleaning for aquatic optical sensors</title><title>International journal of agricultural and biological engineering</title><description>In order to solve the problem of fouling of submerged optical instruments, an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration (SSC) in natural waters. Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials, and to verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case, and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals. So the submerged optical instruments should avoid using metal materials. The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Design</subject><subject>Light</subject><subject>Polyethylene</subject><subject>Salinity</subject><subject>Sediment transport</subject><subject>Sensors</subject><issn>1934-6344</issn><issn>1934-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9jVFLwzAURoMoOKc_QSj4nJrk5iYpPo2hUxj4sj2P2yaRltJ0Tfv_nSi-nO88fYexRylKqAw-d2XbUR1KJSQKJ0wpHcIVW8kKNDeA6vrftb5ldzl3QhjtAFfsZdNOvO4pzwUNc8tjWvp2-CqaPtDwIzFNBZ0XmtumSOOF1Bc5DDlN-Z7dROpzePjbNTu-vR6273z_ufvYbvZ8lA5mHjRSMJaU89QYrL2VtUWqlLcVGaGaJmjppSZUBr2NIITysXKETqOLBGv29Ps7Tum8hDyfurRMwyV5ktaCkyAUwjeIzEu-</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Yali, Zhang</creator><creator>Zhang, Naiqian</creator><general>International Journal of Agricultural and Biological Engineering (IJABE)</general><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BVBZV</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20151201</creationdate><title>Air-blast anti-fouling cleaning for aquatic optical sensors</title><author>Yali, Zhang ; Zhang, Naiqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-e45ae67a28dac65bd71b75a92d79a602cce41d14a5265d7f3002df98a58458fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Design</topic><topic>Light</topic><topic>Polyethylene</topic><topic>Salinity</topic><topic>Sediment transport</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yali, Zhang</creatorcontrib><creatorcontrib>Zhang, Naiqian</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>East &amp; South Asia Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of agricultural and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yali, Zhang</au><au>Zhang, Naiqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-blast anti-fouling cleaning for aquatic optical sensors</atitle><jtitle>International journal of agricultural and biological engineering</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>8</volume><issue>6</issue><spage>128</spage><pages>128-</pages><issn>1934-6344</issn><eissn>1934-6352</eissn><abstract>In order to solve the problem of fouling of submerged optical instruments, an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration (SSC) in natural waters. Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials, and to verify the effectiveness of air-blast cleaning in reducing fouling. Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case, and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals. So the submerged optical instruments should avoid using metal materials. The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.</abstract><cop>Beijing</cop><pub>International Journal of Agricultural and Biological Engineering (IJABE)</pub><doi>10.3965/j.ijabe.20150806.1853</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-6344
ispartof International journal of agricultural and biological engineering, 2015-12, Vol.8 (6), p.128
issn 1934-6344
1934-6352
language eng
recordid cdi_proquest_journals_1773813025
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Aluminum
Design
Light
Polyethylene
Salinity
Sediment transport
Sensors
title Air-blast anti-fouling cleaning for aquatic optical sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-blast%20anti-fouling%20cleaning%20for%20aquatic%20optical%20sensors&rft.jtitle=International%20journal%20of%20agricultural%20and%20biological%20engineering&rft.au=Yali,%20Zhang&rft.date=2015-12-01&rft.volume=8&rft.issue=6&rft.spage=128&rft.pages=128-&rft.issn=1934-6344&rft.eissn=1934-6352&rft_id=info:doi/10.3965/j.ijabe.20150806.1853&rft_dat=%3Cproquest%3E3987279461%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773813025&rft_id=info:pmid/&rfr_iscdi=true