Fabrication of Nanocomposites of SnO2 and MgAl^sub 2^O^sub 4^ for Gas Sensing Applications

Issue Title: Special Section: 2015 Electronic Materials Conference. Guest Editors: Joshua Caldwell, Joshua Zide, Suzanne Mohney, Jamie Phillips, F. Shadi Shahedipour-Sandvik, Nadeem Mahadik, Fareed Qhalid, Suchi Guha, Rachel Goldman, Jian Xu, Angel Yanguas-Gil, Ganesh Balakrishnan Simple solid-state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2016-04, Vol.45 (4), p.2193
Hauptverfasser: Nithyavathy, N, Arunmetha, S, Vinoth, M, Sriram, G, Rajendran, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 2193
container_title Journal of electronic materials
container_volume 45
creator Nithyavathy, N
Arunmetha, S
Vinoth, M
Sriram, G
Rajendran, V
description Issue Title: Special Section: 2015 Electronic Materials Conference. Guest Editors: Joshua Caldwell, Joshua Zide, Suzanne Mohney, Jamie Phillips, F. Shadi Shahedipour-Sandvik, Nadeem Mahadik, Fareed Qhalid, Suchi Guha, Rachel Goldman, Jian Xu, Angel Yanguas-Gil, Ganesh Balakrishnan Simple solid-state and sol-gel routes have been used to synthesize nanocomposites of tin oxide and magnesium aluminate at calcination temperature of 900 K for gas sensing applications. The effects of the surface structure of magnesium aluminate on the gas response for different concentrations of tin oxide addition were investigated for potential use in gas sensors. (SnO2)x doped in small amounts x into magnesium aluminate resulted in three nanocomposite samples MAS0.25, MAS0.50, and MAS0.75 for x = 0.25, 0.50, and 0.75, respectively, plus MgAl^sub 2^O^sub 4^ (MA) for x = 0. The response to different pressures of gases such as oxygen (O2), carbon monoxide (CO), and ethanol (C^sub 2^H^sub 5^OH) was quantitatively analyzed for all samples at different operating temperatures. The temperature was varied linearly by increasing the supply to a heating pad mounted below the sensor sample, regardless of the gas pressure inside the chamber. All the sample materials showed good response at different gas pressures (1 bar to 2 bar) and operating temperatures (300 K to 600 K). It was noted that the composite samples showed enhanced and fast response to gases, at both lower and higher operating temperatures, with detection of even the smallest change in gas pressure.
doi_str_mv 10.1007/s11664-015-4261-z
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1773758880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3986824991</sourcerecordid><originalsourceid>FETCH-proquest_journals_17737588803</originalsourceid><addsrcrecordid>eNqNjLuqwkAURQe5gvHxAXYHrEfnZDLJtCI-GrXQQiwioyYSiTMxJ2n8eqP4AbdasPZiMzZEMUYhogkhhmHABSoe-CHyV4t5qALJUYeHP-YJ2UjlS9VhXaK7aELU6LHjwpzL7GKqzFlwKWyMdRf3KBxlVUIfs7NbH4y9wvo2zWOqz-DH2y-DGFJXwtIQ7BJLmb3BtCjy3xv1WTs1OSWDH3tstJjvZytelO5ZJ1Sd7q4ubTOdMIpkpLTWQv6vegOh4Eg1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773758880</pqid></control><display><type>article</type><title>Fabrication of Nanocomposites of SnO2 and MgAl^sub 2^O^sub 4^ for Gas Sensing Applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nithyavathy, N ; Arunmetha, S ; Vinoth, M ; Sriram, G ; Rajendran, V</creator><creatorcontrib>Nithyavathy, N ; Arunmetha, S ; Vinoth, M ; Sriram, G ; Rajendran, V</creatorcontrib><description>Issue Title: Special Section: 2015 Electronic Materials Conference. Guest Editors: Joshua Caldwell, Joshua Zide, Suzanne Mohney, Jamie Phillips, F. Shadi Shahedipour-Sandvik, Nadeem Mahadik, Fareed Qhalid, Suchi Guha, Rachel Goldman, Jian Xu, Angel Yanguas-Gil, Ganesh Balakrishnan Simple solid-state and sol-gel routes have been used to synthesize nanocomposites of tin oxide and magnesium aluminate at calcination temperature of 900 K for gas sensing applications. The effects of the surface structure of magnesium aluminate on the gas response for different concentrations of tin oxide addition were investigated for potential use in gas sensors. (SnO2)x doped in small amounts x into magnesium aluminate resulted in three nanocomposite samples MAS0.25, MAS0.50, and MAS0.75 for x = 0.25, 0.50, and 0.75, respectively, plus MgAl^sub 2^O^sub 4^ (MA) for x = 0. The response to different pressures of gases such as oxygen (O2), carbon monoxide (CO), and ethanol (C^sub 2^H^sub 5^OH) was quantitatively analyzed for all samples at different operating temperatures. The temperature was varied linearly by increasing the supply to a heating pad mounted below the sensor sample, regardless of the gas pressure inside the chamber. All the sample materials showed good response at different gas pressures (1 bar to 2 bar) and operating temperatures (300 K to 600 K). It was noted that the composite samples showed enhanced and fast response to gases, at both lower and higher operating temperatures, with detection of even the smallest change in gas pressure.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-015-4261-z</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Carbon ; Gases ; Nanocomposites ; Oxygen ; Sensors ; Temperature</subject><ispartof>Journal of electronic materials, 2016-04, Vol.45 (4), p.2193</ispartof><rights>The Minerals, Metals &amp; Materials Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nithyavathy, N</creatorcontrib><creatorcontrib>Arunmetha, S</creatorcontrib><creatorcontrib>Vinoth, M</creatorcontrib><creatorcontrib>Sriram, G</creatorcontrib><creatorcontrib>Rajendran, V</creatorcontrib><title>Fabrication of Nanocomposites of SnO2 and MgAl^sub 2^O^sub 4^ for Gas Sensing Applications</title><title>Journal of electronic materials</title><description>Issue Title: Special Section: 2015 Electronic Materials Conference. Guest Editors: Joshua Caldwell, Joshua Zide, Suzanne Mohney, Jamie Phillips, F. Shadi Shahedipour-Sandvik, Nadeem Mahadik, Fareed Qhalid, Suchi Guha, Rachel Goldman, Jian Xu, Angel Yanguas-Gil, Ganesh Balakrishnan Simple solid-state and sol-gel routes have been used to synthesize nanocomposites of tin oxide and magnesium aluminate at calcination temperature of 900 K for gas sensing applications. The effects of the surface structure of magnesium aluminate on the gas response for different concentrations of tin oxide addition were investigated for potential use in gas sensors. (SnO2)x doped in small amounts x into magnesium aluminate resulted in three nanocomposite samples MAS0.25, MAS0.50, and MAS0.75 for x = 0.25, 0.50, and 0.75, respectively, plus MgAl^sub 2^O^sub 4^ (MA) for x = 0. The response to different pressures of gases such as oxygen (O2), carbon monoxide (CO), and ethanol (C^sub 2^H^sub 5^OH) was quantitatively analyzed for all samples at different operating temperatures. The temperature was varied linearly by increasing the supply to a heating pad mounted below the sensor sample, regardless of the gas pressure inside the chamber. All the sample materials showed good response at different gas pressures (1 bar to 2 bar) and operating temperatures (300 K to 600 K). It was noted that the composite samples showed enhanced and fast response to gases, at both lower and higher operating temperatures, with detection of even the smallest change in gas pressure.</description><subject>Carbon</subject><subject>Gases</subject><subject>Nanocomposites</subject><subject>Oxygen</subject><subject>Sensors</subject><subject>Temperature</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNjLuqwkAURQe5gvHxAXYHrEfnZDLJtCI-GrXQQiwioyYSiTMxJ2n8eqP4AbdasPZiMzZEMUYhogkhhmHABSoe-CHyV4t5qALJUYeHP-YJ2UjlS9VhXaK7aELU6LHjwpzL7GKqzFlwKWyMdRf3KBxlVUIfs7NbH4y9wvo2zWOqz-DH2y-DGFJXwtIQ7BJLmb3BtCjy3xv1WTs1OSWDH3tstJjvZytelO5ZJ1Sd7q4ubTOdMIpkpLTWQv6vegOh4Eg1</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Nithyavathy, N</creator><creator>Arunmetha, S</creator><creator>Vinoth, M</creator><creator>Sriram, G</creator><creator>Rajendran, V</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160401</creationdate><title>Fabrication of Nanocomposites of SnO2 and MgAl^sub 2^O^sub 4^ for Gas Sensing Applications</title><author>Nithyavathy, N ; Arunmetha, S ; Vinoth, M ; Sriram, G ; Rajendran, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_17737588803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>Gases</topic><topic>Nanocomposites</topic><topic>Oxygen</topic><topic>Sensors</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nithyavathy, N</creatorcontrib><creatorcontrib>Arunmetha, S</creatorcontrib><creatorcontrib>Vinoth, M</creatorcontrib><creatorcontrib>Sriram, G</creatorcontrib><creatorcontrib>Rajendran, V</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nithyavathy, N</au><au>Arunmetha, S</au><au>Vinoth, M</au><au>Sriram, G</au><au>Rajendran, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Nanocomposites of SnO2 and MgAl^sub 2^O^sub 4^ for Gas Sensing Applications</atitle><jtitle>Journal of electronic materials</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>45</volume><issue>4</issue><spage>2193</spage><pages>2193-</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Issue Title: Special Section: 2015 Electronic Materials Conference. Guest Editors: Joshua Caldwell, Joshua Zide, Suzanne Mohney, Jamie Phillips, F. Shadi Shahedipour-Sandvik, Nadeem Mahadik, Fareed Qhalid, Suchi Guha, Rachel Goldman, Jian Xu, Angel Yanguas-Gil, Ganesh Balakrishnan Simple solid-state and sol-gel routes have been used to synthesize nanocomposites of tin oxide and magnesium aluminate at calcination temperature of 900 K for gas sensing applications. The effects of the surface structure of magnesium aluminate on the gas response for different concentrations of tin oxide addition were investigated for potential use in gas sensors. (SnO2)x doped in small amounts x into magnesium aluminate resulted in three nanocomposite samples MAS0.25, MAS0.50, and MAS0.75 for x = 0.25, 0.50, and 0.75, respectively, plus MgAl^sub 2^O^sub 4^ (MA) for x = 0. The response to different pressures of gases such as oxygen (O2), carbon monoxide (CO), and ethanol (C^sub 2^H^sub 5^OH) was quantitatively analyzed for all samples at different operating temperatures. The temperature was varied linearly by increasing the supply to a heating pad mounted below the sensor sample, regardless of the gas pressure inside the chamber. All the sample materials showed good response at different gas pressures (1 bar to 2 bar) and operating temperatures (300 K to 600 K). It was noted that the composite samples showed enhanced and fast response to gases, at both lower and higher operating temperatures, with detection of even the smallest change in gas pressure.</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-015-4261-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2016-04, Vol.45 (4), p.2193
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1773758880
source SpringerLink Journals - AutoHoldings
subjects Carbon
Gases
Nanocomposites
Oxygen
Sensors
Temperature
title Fabrication of Nanocomposites of SnO2 and MgAl^sub 2^O^sub 4^ for Gas Sensing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Nanocomposites%20of%20SnO2%20and%20MgAl%5Esub%202%5EO%5Esub%204%5E%20for%20Gas%20Sensing%20Applications&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Nithyavathy,%20N&rft.date=2016-04-01&rft.volume=45&rft.issue=4&rft.spage=2193&rft.pages=2193-&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-015-4261-z&rft_dat=%3Cproquest%3E3986824991%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773758880&rft_id=info:pmid/&rfr_iscdi=true