moocRP: Enabling Open Learning Analytics with an Open Source Platform for Data Distribution, Analysis, and Visualization

In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technology, knowledge and learning knowledge and learning, 2016-04, Vol.21 (1), p.75-98
Hauptverfasser: Pardos, Zachary A., Whyte, Anthony, Kao, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 75
container_title Technology, knowledge and learning
container_volume 21
creator Pardos, Zachary A.
Whyte, Anthony
Kao, Kevin
description In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as well as provides a simple analytics module upload format to enable reuse and replication of analytics results among instructors and researchers. We survey the evolving landscape of competing established and emerging data models, all of which are accommodated in the platform. Data model descriptions are provided to analytics authors who choose, much like with smartphone app stores, to write for any number of data models depending on their needs and the proliferation of the particular data model. Two case study examples of analytics and responsive visualizations based on different data models are described in the paper. The result is a simple but effective approach to learning analytics immediately applicable to X consortium MOOCs and beyond.
doi_str_mv 10.1007/s10758-015-9268-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1773180792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1093410</ericid><sourcerecordid>3984476161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3d00973779e0a64f226d1abc1377dd85f7de622eb968ff414cd2edca2ee6ed0a3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOOZ-gBdCwNtVc9KPtN6NbX4x2PDrNqRJOjO6diYpOn-9KZXhjblITvK878nhDYJzwFeAMb22gGmShRiSMCdpFpKjYEAIQAgpxceHOiWnwcjaDfYrwSSLk0HwtW0a8bS6QfOaF5Wu12i5UzVaKG7q7japebV3Wlj0qd074nXPn5vWCIVWFXdlY7bIb2jGHUczbZ3RRet0U497t9V27I0SvWnb8kp_8w6eBSclr6wa_Z7D4PV2_jK9DxfLu4fpZBGKOAEXRhLjnEaU5grzNC4JSSXwQoB_kjJLSipVSogq8jQryxhiIYmSghOlUiUxj4bBZd93Z5qPVlnHNn52P5dlQGkEGaY58SroVcI01hpVsp3RW272DDDrMmZ9xsxnzLqMWee56D3KaHHQzx8B51EM2HPSc-tZvVbmz8__Nv0Bn9OI9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773180792</pqid></control><display><type>article</type><title>moocRP: Enabling Open Learning Analytics with an Open Source Platform for Data Distribution, Analysis, and Visualization</title><source>SpringerLink (Online service)</source><creator>Pardos, Zachary A. ; Whyte, Anthony ; Kao, Kevin</creator><creatorcontrib>Pardos, Zachary A. ; Whyte, Anthony ; Kao, Kevin</creatorcontrib><description>In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as well as provides a simple analytics module upload format to enable reuse and replication of analytics results among instructors and researchers. We survey the evolving landscape of competing established and emerging data models, all of which are accommodated in the platform. Data model descriptions are provided to analytics authors who choose, much like with smartphone app stores, to write for any number of data models depending on their needs and the proliferation of the particular data model. Two case study examples of analytics and responsive visualizations based on different data models are described in the paper. The result is a simple but effective approach to learning analytics immediately applicable to X consortium MOOCs and beyond.</description><identifier>ISSN: 2211-1662</identifier><identifier>EISSN: 2211-1670</identifier><identifier>DOI: 10.1007/s10758-015-9268-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Case Studies ; Colleges &amp; universities ; Creativity and Arts Education ; Data Analysis ; Data Collection ; Data models ; Education ; Educational Technology ; Higher education ; Large Group Instruction ; Learning analytics ; Learning and Instruction ; Mathematics Education ; Modularity ; MOOCs ; Online Courses ; Open learning ; Open Source Technology ; Privacy ; Science Education ; Technology Uses in Education ; Visualization</subject><ispartof>Technology, knowledge and learning, 2016-04, Vol.21 (1), p.75-98</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3d00973779e0a64f226d1abc1377dd85f7de622eb968ff414cd2edca2ee6ed0a3</citedby><cites>FETCH-LOGICAL-c451t-3d00973779e0a64f226d1abc1377dd85f7de622eb968ff414cd2edca2ee6ed0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10758-015-9268-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10758-015-9268-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1093410$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Pardos, Zachary A.</creatorcontrib><creatorcontrib>Whyte, Anthony</creatorcontrib><creatorcontrib>Kao, Kevin</creatorcontrib><title>moocRP: Enabling Open Learning Analytics with an Open Source Platform for Data Distribution, Analysis, and Visualization</title><title>Technology, knowledge and learning</title><addtitle>Tech Know Learn</addtitle><description>In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as well as provides a simple analytics module upload format to enable reuse and replication of analytics results among instructors and researchers. We survey the evolving landscape of competing established and emerging data models, all of which are accommodated in the platform. Data model descriptions are provided to analytics authors who choose, much like with smartphone app stores, to write for any number of data models depending on their needs and the proliferation of the particular data model. Two case study examples of analytics and responsive visualizations based on different data models are described in the paper. The result is a simple but effective approach to learning analytics immediately applicable to X consortium MOOCs and beyond.</description><subject>Case Studies</subject><subject>Colleges &amp; universities</subject><subject>Creativity and Arts Education</subject><subject>Data Analysis</subject><subject>Data Collection</subject><subject>Data models</subject><subject>Education</subject><subject>Educational Technology</subject><subject>Higher education</subject><subject>Large Group Instruction</subject><subject>Learning analytics</subject><subject>Learning and Instruction</subject><subject>Mathematics Education</subject><subject>Modularity</subject><subject>MOOCs</subject><subject>Online Courses</subject><subject>Open learning</subject><subject>Open Source Technology</subject><subject>Privacy</subject><subject>Science Education</subject><subject>Technology Uses in Education</subject><subject>Visualization</subject><issn>2211-1662</issn><issn>2211-1670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhosoOOZ-gBdCwNtVc9KPtN6NbX4x2PDrNqRJOjO6diYpOn-9KZXhjblITvK878nhDYJzwFeAMb22gGmShRiSMCdpFpKjYEAIQAgpxceHOiWnwcjaDfYrwSSLk0HwtW0a8bS6QfOaF5Wu12i5UzVaKG7q7japebV3Wlj0qd074nXPn5vWCIVWFXdlY7bIb2jGHUczbZ3RRet0U497t9V27I0SvWnb8kp_8w6eBSclr6wa_Z7D4PV2_jK9DxfLu4fpZBGKOAEXRhLjnEaU5grzNC4JSSXwQoB_kjJLSipVSogq8jQryxhiIYmSghOlUiUxj4bBZd93Z5qPVlnHNn52P5dlQGkEGaY58SroVcI01hpVsp3RW272DDDrMmZ9xsxnzLqMWee56D3KaHHQzx8B51EM2HPSc-tZvVbmz8__Nv0Bn9OI9Q</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Pardos, Zachary A.</creator><creator>Whyte, Anthony</creator><creator>Kao, Kevin</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M0P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>moocRP: Enabling Open Learning Analytics with an Open Source Platform for Data Distribution, Analysis, and Visualization</title><author>Pardos, Zachary A. ; Whyte, Anthony ; Kao, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3d00973779e0a64f226d1abc1377dd85f7de622eb968ff414cd2edca2ee6ed0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Case Studies</topic><topic>Colleges &amp; universities</topic><topic>Creativity and Arts Education</topic><topic>Data Analysis</topic><topic>Data Collection</topic><topic>Data models</topic><topic>Education</topic><topic>Educational Technology</topic><topic>Higher education</topic><topic>Large Group Instruction</topic><topic>Learning analytics</topic><topic>Learning and Instruction</topic><topic>Mathematics Education</topic><topic>Modularity</topic><topic>MOOCs</topic><topic>Online Courses</topic><topic>Open learning</topic><topic>Open Source Technology</topic><topic>Privacy</topic><topic>Science Education</topic><topic>Technology Uses in Education</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardos, Zachary A.</creatorcontrib><creatorcontrib>Whyte, Anthony</creatorcontrib><creatorcontrib>Kao, Kevin</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Computing Database</collection><collection>Education Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Technology, knowledge and learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardos, Zachary A.</au><au>Whyte, Anthony</au><au>Kao, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1093410</ericid><atitle>moocRP: Enabling Open Learning Analytics with an Open Source Platform for Data Distribution, Analysis, and Visualization</atitle><jtitle>Technology, knowledge and learning</jtitle><stitle>Tech Know Learn</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>21</volume><issue>1</issue><spage>75</spage><epage>98</epage><pages>75-98</pages><issn>2211-1662</issn><eissn>2211-1670</eissn><abstract>In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as well as provides a simple analytics module upload format to enable reuse and replication of analytics results among instructors and researchers. We survey the evolving landscape of competing established and emerging data models, all of which are accommodated in the platform. Data model descriptions are provided to analytics authors who choose, much like with smartphone app stores, to write for any number of data models depending on their needs and the proliferation of the particular data model. Two case study examples of analytics and responsive visualizations based on different data models are described in the paper. The result is a simple but effective approach to learning analytics immediately applicable to X consortium MOOCs and beyond.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10758-015-9268-2</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1662
ispartof Technology, knowledge and learning, 2016-04, Vol.21 (1), p.75-98
issn 2211-1662
2211-1670
language eng
recordid cdi_proquest_journals_1773180792
source SpringerLink (Online service)
subjects Case Studies
Colleges & universities
Creativity and Arts Education
Data Analysis
Data Collection
Data models
Education
Educational Technology
Higher education
Large Group Instruction
Learning analytics
Learning and Instruction
Mathematics Education
Modularity
MOOCs
Online Courses
Open learning
Open Source Technology
Privacy
Science Education
Technology Uses in Education
Visualization
title moocRP: Enabling Open Learning Analytics with an Open Source Platform for Data Distribution, Analysis, and Visualization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=moocRP:%20Enabling%20Open%20Learning%20Analytics%20with%20an%20Open%20Source%20Platform%20for%20Data%20Distribution,%20Analysis,%20and%20Visualization&rft.jtitle=Technology,%20knowledge%20and%20learning&rft.au=Pardos,%20Zachary%20A.&rft.date=2016-04-01&rft.volume=21&rft.issue=1&rft.spage=75&rft.epage=98&rft.pages=75-98&rft.issn=2211-1662&rft.eissn=2211-1670&rft_id=info:doi/10.1007/s10758-015-9268-2&rft_dat=%3Cproquest_cross%3E3984476161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773180792&rft_id=info:pmid/&rft_ericid=EJ1093410&rfr_iscdi=true