RelHunter: a machine learning method for relation extraction from text

We propose RelHunter , a machine learning-based method for the extraction of structured information from text. RelHunter ’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Computer Society 2010-09, Vol.16 (3), p.191-199
Hauptverfasser: Fernandes, Eraldo R., Milidiú, Ruy L., Rentería, Raúl P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 3
container_start_page 191
container_title Journal of the Brazilian Computer Society
container_volume 16
creator Fernandes, Eraldo R.
Milidiú, Ruy L.
Rentería, Raúl P.
description We propose RelHunter , a machine learning-based method for the extraction of structured information from text. RelHunter ’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one. RelHunter fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare RelHunter to token classification approaches through several computational experiments on seven multilingual corpora. RelHunter outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora.
doi_str_mv 10.1007/s13173-010-0018-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1773053970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3984251411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226y-80fdd5c03a7fc18a511f0c25151a9a987a3ea4fd4b66a5867ddff7d49a01c5083</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYfwFvA8-pMNpvdeJOirVAQRM_LuNltU9Kk7qZg3sZn8clMjQcvnmaY-X_Aj7FLhGsEUDcRBSrBAYEDoOb9EZtgrjTPNGTHbDI8Mp5LgFN2FuMGIIVMwITNn1292DedC7cJJVuy66pxSe0oNFWzSrauW7dl4tvw9RlcTV3VNon76ALZn9WHdpt0w-GcnXiqo7v4nVP2-nD_Mlvw5dP8cXa35DZN855r8GUpLQhS3qImiejBphIlUkGFViQcZb7M3vKcpM5VWXqvyqwgQCtBiym7GnN3oX3fu9iZTbsPzVBpUCkBUhQKBhWOKhvaGIPzZheqLYXeIJgDLzPyMgMWc-Bl-sGTjp44aJuVC3-S_zV9A7Nwbtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773053970</pqid></control><display><type>article</type><title>RelHunter: a machine learning method for relation extraction from text</title><source>Springer Nature OA Free Journals</source><creator>Fernandes, Eraldo R. ; Milidiú, Ruy L. ; Rentería, Raúl P.</creator><creatorcontrib>Fernandes, Eraldo R. ; Milidiú, Ruy L. ; Rentería, Raúl P.</creatorcontrib><description>We propose RelHunter , a machine learning-based method for the extraction of structured information from text. RelHunter ’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one. RelHunter fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare RelHunter to token classification approaches through several computational experiments on seven multilingual corpora. RelHunter outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora.</description><identifier>ISSN: 0104-6500</identifier><identifier>EISSN: 1678-4804</identifier><identifier>DOI: 10.1007/s13173-010-0018-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Computer System Implementation ; Data Structures ; Operating Systems ; Original Paper ; Simulation and Modeling</subject><ispartof>Journal of the Brazilian Computer Society, 2010-09, Vol.16 (3), p.191-199</ispartof><rights>The Brazilian Computer Society 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226y-80fdd5c03a7fc18a511f0c25151a9a987a3ea4fd4b66a5867ddff7d49a01c5083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13173-010-0018-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13173-010-0018-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Fernandes, Eraldo R.</creatorcontrib><creatorcontrib>Milidiú, Ruy L.</creatorcontrib><creatorcontrib>Rentería, Raúl P.</creatorcontrib><title>RelHunter: a machine learning method for relation extraction from text</title><title>Journal of the Brazilian Computer Society</title><addtitle>J Braz Comput Soc</addtitle><description>We propose RelHunter , a machine learning-based method for the extraction of structured information from text. RelHunter ’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one. RelHunter fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare RelHunter to token classification approaches through several computational experiments on seven multilingual corpora. RelHunter outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora.</description><subject>Computer Science</subject><subject>Computer System Implementation</subject><subject>Data Structures</subject><subject>Operating Systems</subject><subject>Original Paper</subject><subject>Simulation and Modeling</subject><issn>0104-6500</issn><issn>1678-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM1Kw0AQxxdRsFYfwFvA8-pMNpvdeJOirVAQRM_LuNltU9Kk7qZg3sZn8clMjQcvnmaY-X_Aj7FLhGsEUDcRBSrBAYEDoOb9EZtgrjTPNGTHbDI8Mp5LgFN2FuMGIIVMwITNn1292DedC7cJJVuy66pxSe0oNFWzSrauW7dl4tvw9RlcTV3VNon76ALZn9WHdpt0w-GcnXiqo7v4nVP2-nD_Mlvw5dP8cXa35DZN855r8GUpLQhS3qImiejBphIlUkGFViQcZb7M3vKcpM5VWXqvyqwgQCtBiym7GnN3oX3fu9iZTbsPzVBpUCkBUhQKBhWOKhvaGIPzZheqLYXeIJgDLzPyMgMWc-Bl-sGTjp44aJuVC3-S_zV9A7Nwbtc</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Fernandes, Eraldo R.</creator><creator>Milidiú, Ruy L.</creator><creator>Rentería, Raúl P.</creator><general>Springer London</general><general>Sociedade Brasileira de Computação</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>201009</creationdate><title>RelHunter: a machine learning method for relation extraction from text</title><author>Fernandes, Eraldo R. ; Milidiú, Ruy L. ; Rentería, Raúl P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226y-80fdd5c03a7fc18a511f0c25151a9a987a3ea4fd4b66a5867ddff7d49a01c5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Science</topic><topic>Computer System Implementation</topic><topic>Data Structures</topic><topic>Operating Systems</topic><topic>Original Paper</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Eraldo R.</creatorcontrib><creatorcontrib>Milidiú, Ruy L.</creatorcontrib><creatorcontrib>Rentería, Raúl P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Brazilian Computer Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Eraldo R.</au><au>Milidiú, Ruy L.</au><au>Rentería, Raúl P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RelHunter: a machine learning method for relation extraction from text</atitle><jtitle>Journal of the Brazilian Computer Society</jtitle><stitle>J Braz Comput Soc</stitle><date>2010-09</date><risdate>2010</risdate><volume>16</volume><issue>3</issue><spage>191</spage><epage>199</epage><pages>191-199</pages><issn>0104-6500</issn><eissn>1678-4804</eissn><abstract>We propose RelHunter , a machine learning-based method for the extraction of structured information from text. RelHunter ’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one. RelHunter fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare RelHunter to token classification approaches through several computational experiments on seven multilingual corpora. RelHunter outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s13173-010-0018-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0104-6500
ispartof Journal of the Brazilian Computer Society, 2010-09, Vol.16 (3), p.191-199
issn 0104-6500
1678-4804
language eng
recordid cdi_proquest_journals_1773053970
source Springer Nature OA Free Journals
subjects Computer Science
Computer System Implementation
Data Structures
Operating Systems
Original Paper
Simulation and Modeling
title RelHunter: a machine learning method for relation extraction from text
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RelHunter:%20a%20machine%20learning%20method%20for%C2%A0relation%20extraction%20from%20text&rft.jtitle=Journal%20of%20the%20Brazilian%20Computer%20Society&rft.au=Fernandes,%20Eraldo%20R.&rft.date=2010-09&rft.volume=16&rft.issue=3&rft.spage=191&rft.epage=199&rft.pages=191-199&rft.issn=0104-6500&rft.eissn=1678-4804&rft_id=info:doi/10.1007/s13173-010-0018-y&rft_dat=%3Cproquest_cross%3E3984251411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773053970&rft_id=info:pmid/&rfr_iscdi=true