RelHunter: a machine learning method for relation extraction from text
We propose RelHunter , a machine learning-based method for the extraction of structured information from text. RelHunter ’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidat...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Computer Society 2010-09, Vol.16 (3), p.191-199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 3 |
container_start_page | 191 |
container_title | Journal of the Brazilian Computer Society |
container_volume | 16 |
creator | Fernandes, Eraldo R. Milidiú, Ruy L. Rentería, Raúl P. |
description | We propose
RelHunter
, a machine learning-based method for the extraction of structured information from text.
RelHunter
’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one.
RelHunter
fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare
RelHunter
to token classification approaches through several computational experiments on seven multilingual corpora.
RelHunter
outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora. |
doi_str_mv | 10.1007/s13173-010-0018-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1773053970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3984251411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226y-80fdd5c03a7fc18a511f0c25151a9a987a3ea4fd4b66a5867ddff7d49a01c5083</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYfwFvA8-pMNpvdeJOirVAQRM_LuNltU9Kk7qZg3sZn8clMjQcvnmaY-X_Aj7FLhGsEUDcRBSrBAYEDoOb9EZtgrjTPNGTHbDI8Mp5LgFN2FuMGIIVMwITNn1292DedC7cJJVuy66pxSe0oNFWzSrauW7dl4tvw9RlcTV3VNon76ALZn9WHdpt0w-GcnXiqo7v4nVP2-nD_Mlvw5dP8cXa35DZN855r8GUpLQhS3qImiejBphIlUkGFViQcZb7M3vKcpM5VWXqvyqwgQCtBiym7GnN3oX3fu9iZTbsPzVBpUCkBUhQKBhWOKhvaGIPzZheqLYXeIJgDLzPyMgMWc-Bl-sGTjp44aJuVC3-S_zV9A7Nwbtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773053970</pqid></control><display><type>article</type><title>RelHunter: a machine learning method for relation extraction from text</title><source>Springer Nature OA Free Journals</source><creator>Fernandes, Eraldo R. ; Milidiú, Ruy L. ; Rentería, Raúl P.</creator><creatorcontrib>Fernandes, Eraldo R. ; Milidiú, Ruy L. ; Rentería, Raúl P.</creatorcontrib><description>We propose
RelHunter
, a machine learning-based method for the extraction of structured information from text.
RelHunter
’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one.
RelHunter
fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare
RelHunter
to token classification approaches through several computational experiments on seven multilingual corpora.
RelHunter
outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora.</description><identifier>ISSN: 0104-6500</identifier><identifier>EISSN: 1678-4804</identifier><identifier>DOI: 10.1007/s13173-010-0018-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Computer System Implementation ; Data Structures ; Operating Systems ; Original Paper ; Simulation and Modeling</subject><ispartof>Journal of the Brazilian Computer Society, 2010-09, Vol.16 (3), p.191-199</ispartof><rights>The Brazilian Computer Society 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226y-80fdd5c03a7fc18a511f0c25151a9a987a3ea4fd4b66a5867ddff7d49a01c5083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13173-010-0018-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13173-010-0018-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Fernandes, Eraldo R.</creatorcontrib><creatorcontrib>Milidiú, Ruy L.</creatorcontrib><creatorcontrib>Rentería, Raúl P.</creatorcontrib><title>RelHunter: a machine learning method for relation extraction from text</title><title>Journal of the Brazilian Computer Society</title><addtitle>J Braz Comput Soc</addtitle><description>We propose
RelHunter
, a machine learning-based method for the extraction of structured information from text.
RelHunter
’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one.
RelHunter
fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare
RelHunter
to token classification approaches through several computational experiments on seven multilingual corpora.
RelHunter
outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora.</description><subject>Computer Science</subject><subject>Computer System Implementation</subject><subject>Data Structures</subject><subject>Operating Systems</subject><subject>Original Paper</subject><subject>Simulation and Modeling</subject><issn>0104-6500</issn><issn>1678-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM1Kw0AQxxdRsFYfwFvA8-pMNpvdeJOirVAQRM_LuNltU9Kk7qZg3sZn8clMjQcvnmaY-X_Aj7FLhGsEUDcRBSrBAYEDoOb9EZtgrjTPNGTHbDI8Mp5LgFN2FuMGIIVMwITNn1292DedC7cJJVuy66pxSe0oNFWzSrauW7dl4tvw9RlcTV3VNon76ALZn9WHdpt0w-GcnXiqo7v4nVP2-nD_Mlvw5dP8cXa35DZN855r8GUpLQhS3qImiejBphIlUkGFViQcZb7M3vKcpM5VWXqvyqwgQCtBiym7GnN3oX3fu9iZTbsPzVBpUCkBUhQKBhWOKhvaGIPzZheqLYXeIJgDLzPyMgMWc-Bl-sGTjp44aJuVC3-S_zV9A7Nwbtc</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Fernandes, Eraldo R.</creator><creator>Milidiú, Ruy L.</creator><creator>Rentería, Raúl P.</creator><general>Springer London</general><general>Sociedade Brasileira de Computação</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>201009</creationdate><title>RelHunter: a machine learning method for relation extraction from text</title><author>Fernandes, Eraldo R. ; Milidiú, Ruy L. ; Rentería, Raúl P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226y-80fdd5c03a7fc18a511f0c25151a9a987a3ea4fd4b66a5867ddff7d49a01c5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Science</topic><topic>Computer System Implementation</topic><topic>Data Structures</topic><topic>Operating Systems</topic><topic>Original Paper</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Eraldo R.</creatorcontrib><creatorcontrib>Milidiú, Ruy L.</creatorcontrib><creatorcontrib>Rentería, Raúl P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Brazilian Computer Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Eraldo R.</au><au>Milidiú, Ruy L.</au><au>Rentería, Raúl P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RelHunter: a machine learning method for relation extraction from text</atitle><jtitle>Journal of the Brazilian Computer Society</jtitle><stitle>J Braz Comput Soc</stitle><date>2010-09</date><risdate>2010</risdate><volume>16</volume><issue>3</issue><spage>191</spage><epage>199</epage><pages>191-199</pages><issn>0104-6500</issn><eissn>1678-4804</eissn><abstract>We propose
RelHunter
, a machine learning-based method for the extraction of structured information from text.
RelHunter
’s key idea is to model the target structures as a relation over entities. Hence, the modeling effort is reduced to the identification of entities and the generation of a candidate relation, which are simpler problems than the original one.
RelHunter
fits a very broad spectrum of complex computational linguistic problems. We apply it to five tasks: phrase chunking, clause identification, hedge detection, quotation extraction, and dependency parsing. We compare
RelHunter
to token classification approaches through several computational experiments on seven multilingual corpora.
RelHunter
outperforms the token classification approaches by 2.14% on average. Moreover, we compare the derived systems against state-of-the-art systems for each corpus. Our systems achieve state-of-the-art performances for three corpora: Portuguese phrase chunking, Portuguese clause identification, and English quotation extraction. Additionally, the derived systems show good quality performance for the other four corpora.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s13173-010-0018-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0104-6500 |
ispartof | Journal of the Brazilian Computer Society, 2010-09, Vol.16 (3), p.191-199 |
issn | 0104-6500 1678-4804 |
language | eng |
recordid | cdi_proquest_journals_1773053970 |
source | Springer Nature OA Free Journals |
subjects | Computer Science Computer System Implementation Data Structures Operating Systems Original Paper Simulation and Modeling |
title | RelHunter: a machine learning method for relation extraction from text |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RelHunter:%20a%20machine%20learning%20method%20for%C2%A0relation%20extraction%20from%20text&rft.jtitle=Journal%20of%20the%20Brazilian%20Computer%20Society&rft.au=Fernandes,%20Eraldo%20R.&rft.date=2010-09&rft.volume=16&rft.issue=3&rft.spage=191&rft.epage=199&rft.pages=191-199&rft.issn=0104-6500&rft.eissn=1678-4804&rft_id=info:doi/10.1007/s13173-010-0018-y&rft_dat=%3Cproquest_cross%3E3984251411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773053970&rft_id=info:pmid/&rfr_iscdi=true |