A Novel Online Multivariate Identification for Autotuning Speed Control in PMSM Drives

A novel online algorithm to identify the moment of inertia, viscous friction coefficient, and load torque of PMSM (Permanent Magnet Synchronous Motor) drives and a distinctive autotuning speed control scheme are presented. The proposed identification algorithm does not require motors run in a partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-13
Hauptverfasser: Liu, Yi, Chen, Bing, Ai, Wu, Chen, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2016
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2016
creator Liu, Yi
Chen, Bing
Ai, Wu
Chen, Ke
description A novel online algorithm to identify the moment of inertia, viscous friction coefficient, and load torque of PMSM (Permanent Magnet Synchronous Motor) drives and a distinctive autotuning speed control scheme are presented. The proposed identification algorithm does not require motors run in a particular trajectory and only needs a short identification time. A Luenberger speed observer is introduced to eliminate noises which are generated by the detection of position signal and to improve the accuracy of identified parameters. Parameters of the speed controller are optimized by analyzing the mathematical model of the system and the formula of the PI controller. Compared to a standard recursive least squares method (RLSM) and traditional PI algorithm, the effectiveness of the proposed identification algorithm and autotuning speed control scheme are validated through simulations and experiments.
doi_str_mv 10.1155/2016/1780710
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1772782071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3983508061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-60048ec6679427353fb3ab970f8d374f0dddd91f8406b0e2690023c98fa216353</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdXtIm7XHMXwPnhKl4K1mbaEZNZppO_O_N6MCj7_Le4cN7jy9Cp0CuALJsRAnwEYicCCB7aAAZZ0kGqdiPM6FpApS9HaKjtl0RQiGDfIBex_jRbVSD57YxVuFZ1wSzkd7IoPC0VjYYbSoZjLNYO4_HXXChs8a-48VaqRpPnA3eNdhY_DRbzPC1NxvVHqMDLZtWnez6EL3c3jxP7pOH-d10Mn5IKgYiJJyQNFcV56JIqWAZ00sml4UgOq-ZSDWpYxWg85TwJVGUF_FxVhW5lhR49EN03u9de_fVqTaUK9d5G0-WIAQVOY1ZRHXZq8q7tvVKl2tvPqX_KYGU2-TKbXLlLrnIL3r-YWwtv81_-qzXKhql5Z-OJQrGfgEYaHWG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772782071</pqid></control><display><type>article</type><title>A Novel Online Multivariate Identification for Autotuning Speed Control in PMSM Drives</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Liu, Yi ; Chen, Bing ; Ai, Wu ; Chen, Ke</creator><contributor>Peng, Haipeng</contributor><creatorcontrib>Liu, Yi ; Chen, Bing ; Ai, Wu ; Chen, Ke ; Peng, Haipeng</creatorcontrib><description>A novel online algorithm to identify the moment of inertia, viscous friction coefficient, and load torque of PMSM (Permanent Magnet Synchronous Motor) drives and a distinctive autotuning speed control scheme are presented. The proposed identification algorithm does not require motors run in a particular trajectory and only needs a short identification time. A Luenberger speed observer is introduced to eliminate noises which are generated by the detection of position signal and to improve the accuracy of identified parameters. Parameters of the speed controller are optimized by analyzing the mathematical model of the system and the formula of the PI controller. Compared to a standard recursive least squares method (RLSM) and traditional PI algorithm, the effectiveness of the proposed identification algorithm and autotuning speed control scheme are validated through simulations and experiments.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2016/1780710</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Coefficient of friction ; Control algorithms ; Controllers ; Friction ; Identification ; Inertia ; Kalman filters ; Least squares method ; Load ; Mathematical models ; Moments of inertia ; Parameter identification ; Permanent magnets ; Speed control ; Synchronous motors ; Trajectory analysis ; Trajectory control ; Velocity</subject><ispartof>Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-13</ispartof><rights>Copyright © 2016 Ke Chen et al.</rights><rights>Copyright © 2016 Ke Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-60048ec6679427353fb3ab970f8d374f0dddd91f8406b0e2690023c98fa216353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Peng, Haipeng</contributor><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Ai, Wu</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><title>A Novel Online Multivariate Identification for Autotuning Speed Control in PMSM Drives</title><title>Mathematical problems in engineering</title><description>A novel online algorithm to identify the moment of inertia, viscous friction coefficient, and load torque of PMSM (Permanent Magnet Synchronous Motor) drives and a distinctive autotuning speed control scheme are presented. The proposed identification algorithm does not require motors run in a particular trajectory and only needs a short identification time. A Luenberger speed observer is introduced to eliminate noises which are generated by the detection of position signal and to improve the accuracy of identified parameters. Parameters of the speed controller are optimized by analyzing the mathematical model of the system and the formula of the PI controller. Compared to a standard recursive least squares method (RLSM) and traditional PI algorithm, the effectiveness of the proposed identification algorithm and autotuning speed control scheme are validated through simulations and experiments.</description><subject>Algorithms</subject><subject>Coefficient of friction</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Friction</subject><subject>Identification</subject><subject>Inertia</subject><subject>Kalman filters</subject><subject>Least squares method</subject><subject>Load</subject><subject>Mathematical models</subject><subject>Moments of inertia</subject><subject>Parameter identification</subject><subject>Permanent magnets</subject><subject>Speed control</subject><subject>Synchronous motors</subject><subject>Trajectory analysis</subject><subject>Trajectory control</subject><subject>Velocity</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpdXtIm7XHMXwPnhKl4K1mbaEZNZppO_O_N6MCj7_Le4cN7jy9Cp0CuALJsRAnwEYicCCB7aAAZZ0kGqdiPM6FpApS9HaKjtl0RQiGDfIBex_jRbVSD57YxVuFZ1wSzkd7IoPC0VjYYbSoZjLNYO4_HXXChs8a-48VaqRpPnA3eNdhY_DRbzPC1NxvVHqMDLZtWnez6EL3c3jxP7pOH-d10Mn5IKgYiJJyQNFcV56JIqWAZ00sml4UgOq-ZSDWpYxWg85TwJVGUF_FxVhW5lhR49EN03u9de_fVqTaUK9d5G0-WIAQVOY1ZRHXZq8q7tvVKl2tvPqX_KYGU2-TKbXLlLrnIL3r-YWwtv81_-qzXKhql5Z-OJQrGfgEYaHWG</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Liu, Yi</creator><creator>Chen, Bing</creator><creator>Ai, Wu</creator><creator>Chen, Ke</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>A Novel Online Multivariate Identification for Autotuning Speed Control in PMSM Drives</title><author>Liu, Yi ; Chen, Bing ; Ai, Wu ; Chen, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-60048ec6679427353fb3ab970f8d374f0dddd91f8406b0e2690023c98fa216353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Coefficient of friction</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Friction</topic><topic>Identification</topic><topic>Inertia</topic><topic>Kalman filters</topic><topic>Least squares method</topic><topic>Load</topic><topic>Mathematical models</topic><topic>Moments of inertia</topic><topic>Parameter identification</topic><topic>Permanent magnets</topic><topic>Speed control</topic><topic>Synchronous motors</topic><topic>Trajectory analysis</topic><topic>Trajectory control</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Ai, Wu</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yi</au><au>Chen, Bing</au><au>Ai, Wu</au><au>Chen, Ke</au><au>Peng, Haipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Online Multivariate Identification for Autotuning Speed Control in PMSM Drives</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>A novel online algorithm to identify the moment of inertia, viscous friction coefficient, and load torque of PMSM (Permanent Magnet Synchronous Motor) drives and a distinctive autotuning speed control scheme are presented. The proposed identification algorithm does not require motors run in a particular trajectory and only needs a short identification time. A Luenberger speed observer is introduced to eliminate noises which are generated by the detection of position signal and to improve the accuracy of identified parameters. Parameters of the speed controller are optimized by analyzing the mathematical model of the system and the formula of the PI controller. Compared to a standard recursive least squares method (RLSM) and traditional PI algorithm, the effectiveness of the proposed identification algorithm and autotuning speed control scheme are validated through simulations and experiments.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/1780710</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-13
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_1772782071
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Coefficient of friction
Control algorithms
Controllers
Friction
Identification
Inertia
Kalman filters
Least squares method
Load
Mathematical models
Moments of inertia
Parameter identification
Permanent magnets
Speed control
Synchronous motors
Trajectory analysis
Trajectory control
Velocity
title A Novel Online Multivariate Identification for Autotuning Speed Control in PMSM Drives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Online%20Multivariate%20Identification%20for%20Autotuning%20Speed%20Control%20in%20PMSM%20Drives&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liu,%20Yi&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2016/1780710&rft_dat=%3Cproquest_cross%3E3983508061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772782071&rft_id=info:pmid/&rfr_iscdi=true