review of recent developments in HASM
Ground observation is able to obtain highly accurate data with high temporal resolution at observation points, but these observation points are too sparsely to satisfy the application requirements at regional scale. Satellite remote sensing can frequently supply spatially continuous information on e...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2015-10, Vol.74 (8), p.6541-6549 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6549 |
---|---|
container_issue | 8 |
container_start_page | 6541 |
container_title | Environmental earth sciences |
container_volume | 74 |
creator | Yue, Tian-Xiang Zhang, Li-Li Zhao, Na Zhao, Ming-Wei Chen, Chuan-Fa Du, Zheng-Ping Song, Dun-Jiang Fan, Ze-Meng Shi, Wen-Jiao Wang, Shi-Hai Yan, Chang-Qing Li, Qi-Quan Sun, Xiao-Fang Yang, Hai Wilson, John Xu, Bing |
description | Ground observation is able to obtain highly accurate data with high temporal resolution at observation points, but these observation points are too sparsely to satisfy the application requirements at regional scale. Satellite remote sensing can frequently supply spatially continuous information on earth surface, which is impossible from ground-based investigations, but remote sensing description is not able to directly obtain process parameters. In fact, in terms of fundamental theorem of surfaces, a surface is uniquely defined by the first fundamental coefficients, about the details of the surface observed when we stay on the surface, and the second fundamental coefficients, the change of the surface observed from outside the surface. A method for high accuracy surface modeling (HASM) has been developed initiatively to find solutions for error problem and slow-speed problem of earth surface modeling since 1986. HASM takes global approximate information (e.g., remote sensing images or model simulation results) as its driving field and local accurate information (e.g., ground observation data and/or sampling data) as its optimum control constraints. Its output satisfies the iteration stopping criterion which is determined by application requirement for accuracy. This paper reviews problems to be solved in every development stage and applications of HASM. |
doi_str_mv | 10.1007/s12665-015-4489-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1772338494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3981341341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-f26741c1b8401e4edd212f0f11a9f8cec50fc97b14b4b87a56426997d6622943</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGofwJML4jE6k2SzybEUbYWKh9Zz2M0mZUu7W5O24tubuiKenMvM4fv_gY-Qa4R7BCgeIjIpcwqYUyGUpnhGBqikpJJpff57K7gkoxjXkIYj1yAH5C64Y-M-ss5nwVnX7rPaHd2m223THbOmzWbjxcsVufDlJrrRzx6S5dPjcjKj89fp82Q8p1ag3FPPZCHQYqUEoBOurhkyDx6x1F5ZZ3PwVhcVikpUqihzKZjUuqilZEwLPiS3fe0udO8HF_dm3R1Cmz4aLArGuRLfFPaUDV2MwXmzC822DJ8GwZx8mN6HST7MyYfBlGF9Jia2Xbnwp_mf0E0f8mVnylVoonlbsAQAMOQScv4F4Jpo0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772338494</pqid></control><display><type>article</type><title>review of recent developments in HASM</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yue, Tian-Xiang ; Zhang, Li-Li ; Zhao, Na ; Zhao, Ming-Wei ; Chen, Chuan-Fa ; Du, Zheng-Ping ; Song, Dun-Jiang ; Fan, Ze-Meng ; Shi, Wen-Jiao ; Wang, Shi-Hai ; Yan, Chang-Qing ; Li, Qi-Quan ; Sun, Xiao-Fang ; Yang, Hai ; Wilson, John ; Xu, Bing</creator><creatorcontrib>Yue, Tian-Xiang ; Zhang, Li-Li ; Zhao, Na ; Zhao, Ming-Wei ; Chen, Chuan-Fa ; Du, Zheng-Ping ; Song, Dun-Jiang ; Fan, Ze-Meng ; Shi, Wen-Jiao ; Wang, Shi-Hai ; Yan, Chang-Qing ; Li, Qi-Quan ; Sun, Xiao-Fang ; Yang, Hai ; Wilson, John ; Xu, Bing</creatorcontrib><description>Ground observation is able to obtain highly accurate data with high temporal resolution at observation points, but these observation points are too sparsely to satisfy the application requirements at regional scale. Satellite remote sensing can frequently supply spatially continuous information on earth surface, which is impossible from ground-based investigations, but remote sensing description is not able to directly obtain process parameters. In fact, in terms of fundamental theorem of surfaces, a surface is uniquely defined by the first fundamental coefficients, about the details of the surface observed when we stay on the surface, and the second fundamental coefficients, the change of the surface observed from outside the surface. A method for high accuracy surface modeling (HASM) has been developed initiatively to find solutions for error problem and slow-speed problem of earth surface modeling since 1986. HASM takes global approximate information (e.g., remote sensing images or model simulation results) as its driving field and local accurate information (e.g., ground observation data and/or sampling data) as its optimum control constraints. Its output satisfies the iteration stopping criterion which is determined by application requirement for accuracy. This paper reviews problems to be solved in every development stage and applications of HASM.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-015-4489-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biogeosciences ; developmental stages ; Driving ability ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Errors ; Geochemistry ; Geology ; Hydrology/Water Resources ; Remote sensing ; Remote sensing systems ; Satellites ; simulation models ; solutions ; surfaces ; Terrestrial Pollution ; Thematic Issue</subject><ispartof>Environmental earth sciences, 2015-10, Vol.74 (8), p.6541-6549</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-f26741c1b8401e4edd212f0f11a9f8cec50fc97b14b4b87a56426997d6622943</citedby><cites>FETCH-LOGICAL-c416t-f26741c1b8401e4edd212f0f11a9f8cec50fc97b14b4b87a56426997d6622943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-015-4489-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-015-4489-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yue, Tian-Xiang</creatorcontrib><creatorcontrib>Zhang, Li-Li</creatorcontrib><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Zhao, Ming-Wei</creatorcontrib><creatorcontrib>Chen, Chuan-Fa</creatorcontrib><creatorcontrib>Du, Zheng-Ping</creatorcontrib><creatorcontrib>Song, Dun-Jiang</creatorcontrib><creatorcontrib>Fan, Ze-Meng</creatorcontrib><creatorcontrib>Shi, Wen-Jiao</creatorcontrib><creatorcontrib>Wang, Shi-Hai</creatorcontrib><creatorcontrib>Yan, Chang-Qing</creatorcontrib><creatorcontrib>Li, Qi-Quan</creatorcontrib><creatorcontrib>Sun, Xiao-Fang</creatorcontrib><creatorcontrib>Yang, Hai</creatorcontrib><creatorcontrib>Wilson, John</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><title>review of recent developments in HASM</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Ground observation is able to obtain highly accurate data with high temporal resolution at observation points, but these observation points are too sparsely to satisfy the application requirements at regional scale. Satellite remote sensing can frequently supply spatially continuous information on earth surface, which is impossible from ground-based investigations, but remote sensing description is not able to directly obtain process parameters. In fact, in terms of fundamental theorem of surfaces, a surface is uniquely defined by the first fundamental coefficients, about the details of the surface observed when we stay on the surface, and the second fundamental coefficients, the change of the surface observed from outside the surface. A method for high accuracy surface modeling (HASM) has been developed initiatively to find solutions for error problem and slow-speed problem of earth surface modeling since 1986. HASM takes global approximate information (e.g., remote sensing images or model simulation results) as its driving field and local accurate information (e.g., ground observation data and/or sampling data) as its optimum control constraints. Its output satisfies the iteration stopping criterion which is determined by application requirement for accuracy. This paper reviews problems to be solved in every development stage and applications of HASM.</description><subject>Biogeosciences</subject><subject>developmental stages</subject><subject>Driving ability</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Errors</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Remote sensing</subject><subject>Remote sensing systems</subject><subject>Satellites</subject><subject>simulation models</subject><subject>solutions</subject><subject>surfaces</subject><subject>Terrestrial Pollution</subject><subject>Thematic Issue</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEQhoMoWGofwJML4jE6k2SzybEUbYWKh9Zz2M0mZUu7W5O24tubuiKenMvM4fv_gY-Qa4R7BCgeIjIpcwqYUyGUpnhGBqikpJJpff57K7gkoxjXkIYj1yAH5C64Y-M-ss5nwVnX7rPaHd2m223THbOmzWbjxcsVufDlJrrRzx6S5dPjcjKj89fp82Q8p1ag3FPPZCHQYqUEoBOurhkyDx6x1F5ZZ3PwVhcVikpUqihzKZjUuqilZEwLPiS3fe0udO8HF_dm3R1Cmz4aLArGuRLfFPaUDV2MwXmzC822DJ8GwZx8mN6HST7MyYfBlGF9Jia2Xbnwp_mf0E0f8mVnylVoonlbsAQAMOQScv4F4Jpo0w</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Yue, Tian-Xiang</creator><creator>Zhang, Li-Li</creator><creator>Zhao, Na</creator><creator>Zhao, Ming-Wei</creator><creator>Chen, Chuan-Fa</creator><creator>Du, Zheng-Ping</creator><creator>Song, Dun-Jiang</creator><creator>Fan, Ze-Meng</creator><creator>Shi, Wen-Jiao</creator><creator>Wang, Shi-Hai</creator><creator>Yan, Chang-Qing</creator><creator>Li, Qi-Quan</creator><creator>Sun, Xiao-Fang</creator><creator>Yang, Hai</creator><creator>Wilson, John</creator><creator>Xu, Bing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20151001</creationdate><title>review of recent developments in HASM</title><author>Yue, Tian-Xiang ; Zhang, Li-Li ; Zhao, Na ; Zhao, Ming-Wei ; Chen, Chuan-Fa ; Du, Zheng-Ping ; Song, Dun-Jiang ; Fan, Ze-Meng ; Shi, Wen-Jiao ; Wang, Shi-Hai ; Yan, Chang-Qing ; Li, Qi-Quan ; Sun, Xiao-Fang ; Yang, Hai ; Wilson, John ; Xu, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-f26741c1b8401e4edd212f0f11a9f8cec50fc97b14b4b87a56426997d6622943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biogeosciences</topic><topic>developmental stages</topic><topic>Driving ability</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Errors</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Remote sensing</topic><topic>Remote sensing systems</topic><topic>Satellites</topic><topic>simulation models</topic><topic>solutions</topic><topic>surfaces</topic><topic>Terrestrial Pollution</topic><topic>Thematic Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Tian-Xiang</creatorcontrib><creatorcontrib>Zhang, Li-Li</creatorcontrib><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Zhao, Ming-Wei</creatorcontrib><creatorcontrib>Chen, Chuan-Fa</creatorcontrib><creatorcontrib>Du, Zheng-Ping</creatorcontrib><creatorcontrib>Song, Dun-Jiang</creatorcontrib><creatorcontrib>Fan, Ze-Meng</creatorcontrib><creatorcontrib>Shi, Wen-Jiao</creatorcontrib><creatorcontrib>Wang, Shi-Hai</creatorcontrib><creatorcontrib>Yan, Chang-Qing</creatorcontrib><creatorcontrib>Li, Qi-Quan</creatorcontrib><creatorcontrib>Sun, Xiao-Fang</creatorcontrib><creatorcontrib>Yang, Hai</creatorcontrib><creatorcontrib>Wilson, John</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Tian-Xiang</au><au>Zhang, Li-Li</au><au>Zhao, Na</au><au>Zhao, Ming-Wei</au><au>Chen, Chuan-Fa</au><au>Du, Zheng-Ping</au><au>Song, Dun-Jiang</au><au>Fan, Ze-Meng</au><au>Shi, Wen-Jiao</au><au>Wang, Shi-Hai</au><au>Yan, Chang-Qing</au><au>Li, Qi-Quan</au><au>Sun, Xiao-Fang</au><au>Yang, Hai</au><au>Wilson, John</au><au>Xu, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>review of recent developments in HASM</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>74</volume><issue>8</issue><spage>6541</spage><epage>6549</epage><pages>6541-6549</pages><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Ground observation is able to obtain highly accurate data with high temporal resolution at observation points, but these observation points are too sparsely to satisfy the application requirements at regional scale. Satellite remote sensing can frequently supply spatially continuous information on earth surface, which is impossible from ground-based investigations, but remote sensing description is not able to directly obtain process parameters. In fact, in terms of fundamental theorem of surfaces, a surface is uniquely defined by the first fundamental coefficients, about the details of the surface observed when we stay on the surface, and the second fundamental coefficients, the change of the surface observed from outside the surface. A method for high accuracy surface modeling (HASM) has been developed initiatively to find solutions for error problem and slow-speed problem of earth surface modeling since 1986. HASM takes global approximate information (e.g., remote sensing images or model simulation results) as its driving field and local accurate information (e.g., ground observation data and/or sampling data) as its optimum control constraints. Its output satisfies the iteration stopping criterion which is determined by application requirement for accuracy. This paper reviews problems to be solved in every development stage and applications of HASM.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-015-4489-1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2015-10, Vol.74 (8), p.6541-6549 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_journals_1772338494 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biogeosciences developmental stages Driving ability Earth and Environmental Science Earth Sciences Environmental Science and Engineering Errors Geochemistry Geology Hydrology/Water Resources Remote sensing Remote sensing systems Satellites simulation models solutions surfaces Terrestrial Pollution Thematic Issue |
title | review of recent developments in HASM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=review%20of%20recent%20developments%20in%20HASM&rft.jtitle=Environmental%20earth%20sciences&rft.au=Yue,%20Tian-Xiang&rft.date=2015-10-01&rft.volume=74&rft.issue=8&rft.spage=6541&rft.epage=6549&rft.pages=6541-6549&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-015-4489-1&rft_dat=%3Cproquest_cross%3E3981341341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772338494&rft_id=info:pmid/&rfr_iscdi=true |