integrative geothermal resource assessment study for the siliciclastic Granite Wash Unit, northwestern Alberta (Canada)

This study explores the siliciclastic Granite Wash Unit in northwestern Alberta as a potential geothermal reservoir. The approach covers regional 3D structural geological modelling of a 90 km × 70 km area based on well log and legacy 2D seismic data. The fault strike was interpreted from lineaments,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2014-11, Vol.72 (10), p.4141-4154
Hauptverfasser: Weides, Simon N, Moeck, Inga S, Schmitt, Douglas R, Majorowicz, Jacek A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4154
container_issue 10
container_start_page 4141
container_title Environmental earth sciences
container_volume 72
creator Weides, Simon N
Moeck, Inga S
Schmitt, Douglas R
Majorowicz, Jacek A
description This study explores the siliciclastic Granite Wash Unit in northwestern Alberta as a potential geothermal reservoir. The approach covers regional 3D structural geological modelling of a 90 km × 70 km area based on well log and legacy 2D seismic data. The fault strike was interpreted from lineaments, which were identified with the refined trend surface analysis method. The stress state of the Granite Wash reservoirs was determined by an integrated approach of 3D fault modelling, stress ratio definition based on frictional constraints, and slip tendency analysis. The results show that the best site for a geothermal application is located in the southwestern study area, where the highest temperatures (above 70 °C) coincide with the largest thickness (above 20 m) and zones of elevated porosity and permeability. The integrated stress analysis indicates an in situ stress regime from normal to strike-slip faulting maintaining a non-critically stressed reservoir or faults therein, assuming a friction coefficient of 0.7. The granite wash reservoirs could be used for heating of greenhouses, domestic warm water provision and district heating.
doi_str_mv 10.1007/s12665-014-3309-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1772273378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3980777811</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-62e47116c5265ba2feec60fae070cef080a0dfde41c845a3e742646638bf0363</originalsourceid><addsrcrecordid>eNp9UVFrFDEQDqJgOfsDfDIggoKrk2Q3m30sh7ZCwQdbfAxzucldyt5uzeQs_fembCk-NQ-TgXzfl2--EeKtgi8KoP_KSlvbNaDaxhgYGvNCnChnbWP1MLx86h28FqfMN1CPUWYAeyLu0lRol7GkvyR3NJc95QOOMhPPxxxIIjMxH2gqkstxey_jnGVFSU5jCimMyCUFeZ5xSoXkb-S9vK7tZznNuezviAvlSZ6NG8oF5cc1TrjFT2_Eq4gj0-njvRJX379drS-ay5_nP9Znlw222pZqmtpeKRs6bbsN6kgULEQk6CFQBAcI27ilVgXXdmior7TWWuM2EYw1K_F-kb3N859j9eJv6lhT_dGrvte6N6Z3FaUWVMgzc6bob3M6YL73CvxDwn5J2NeE_UPCtazEh0dl5IBjrPOHxE9E7dxgoFUVpxcc16dpR_k_B8-Iv1tIEWePu1yFr39pUF3dnGqdBfMPcvGVeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772273378</pqid></control><display><type>article</type><title>integrative geothermal resource assessment study for the siliciclastic Granite Wash Unit, northwestern Alberta (Canada)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Weides, Simon N ; Moeck, Inga S ; Schmitt, Douglas R ; Majorowicz, Jacek A</creator><creatorcontrib>Weides, Simon N ; Moeck, Inga S ; Schmitt, Douglas R ; Majorowicz, Jacek A</creatorcontrib><description>This study explores the siliciclastic Granite Wash Unit in northwestern Alberta as a potential geothermal reservoir. The approach covers regional 3D structural geological modelling of a 90 km × 70 km area based on well log and legacy 2D seismic data. The fault strike was interpreted from lineaments, which were identified with the refined trend surface analysis method. The stress state of the Granite Wash reservoirs was determined by an integrated approach of 3D fault modelling, stress ratio definition based on frictional constraints, and slip tendency analysis. The results show that the best site for a geothermal application is located in the southwestern study area, where the highest temperatures (above 70 °C) coincide with the largest thickness (above 20 m) and zones of elevated porosity and permeability. The integrated stress analysis indicates an in situ stress regime from normal to strike-slip faulting maintaining a non-critically stressed reservoir or faults therein, assuming a friction coefficient of 0.7. The granite wash reservoirs could be used for heating of greenhouses, domestic warm water provision and district heating.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-014-3309-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biogeosciences ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental science ; Environmental Science and Engineering ; Exact sciences and technology ; friction ; Geochemistry ; Geology ; Geophysics ; Geothermal power ; Geothermal resources ; Geothermics ; Granite ; greenhouses ; heat ; Heating ; Hydrology/Water Resources ; Mathematical models ; Original Article ; permeability ; Porosity ; Reservoirs ; Stress analysis ; temperature ; Terrestrial Pollution</subject><ispartof>Environmental earth sciences, 2014-11, Vol.72 (10), p.4141-4154</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-62e47116c5265ba2feec60fae070cef080a0dfde41c845a3e742646638bf0363</citedby><cites>FETCH-LOGICAL-a426t-62e47116c5265ba2feec60fae070cef080a0dfde41c845a3e742646638bf0363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-014-3309-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-014-3309-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28893041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weides, Simon N</creatorcontrib><creatorcontrib>Moeck, Inga S</creatorcontrib><creatorcontrib>Schmitt, Douglas R</creatorcontrib><creatorcontrib>Majorowicz, Jacek A</creatorcontrib><title>integrative geothermal resource assessment study for the siliciclastic Granite Wash Unit, northwestern Alberta (Canada)</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>This study explores the siliciclastic Granite Wash Unit in northwestern Alberta as a potential geothermal reservoir. The approach covers regional 3D structural geological modelling of a 90 km × 70 km area based on well log and legacy 2D seismic data. The fault strike was interpreted from lineaments, which were identified with the refined trend surface analysis method. The stress state of the Granite Wash reservoirs was determined by an integrated approach of 3D fault modelling, stress ratio definition based on frictional constraints, and slip tendency analysis. The results show that the best site for a geothermal application is located in the southwestern study area, where the highest temperatures (above 70 °C) coincide with the largest thickness (above 20 m) and zones of elevated porosity and permeability. The integrated stress analysis indicates an in situ stress regime from normal to strike-slip faulting maintaining a non-critically stressed reservoir or faults therein, assuming a friction coefficient of 0.7. The granite wash reservoirs could be used for heating of greenhouses, domestic warm water provision and district heating.</description><subject>Biogeosciences</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental science</subject><subject>Environmental Science and Engineering</subject><subject>Exact sciences and technology</subject><subject>friction</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Geothermal power</subject><subject>Geothermal resources</subject><subject>Geothermics</subject><subject>Granite</subject><subject>greenhouses</subject><subject>heat</subject><subject>Heating</subject><subject>Hydrology/Water Resources</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>permeability</subject><subject>Porosity</subject><subject>Reservoirs</subject><subject>Stress analysis</subject><subject>temperature</subject><subject>Terrestrial Pollution</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UVFrFDEQDqJgOfsDfDIggoKrk2Q3m30sh7ZCwQdbfAxzucldyt5uzeQs_fembCk-NQ-TgXzfl2--EeKtgi8KoP_KSlvbNaDaxhgYGvNCnChnbWP1MLx86h28FqfMN1CPUWYAeyLu0lRol7GkvyR3NJc95QOOMhPPxxxIIjMxH2gqkstxey_jnGVFSU5jCimMyCUFeZ5xSoXkb-S9vK7tZznNuezviAvlSZ6NG8oF5cc1TrjFT2_Eq4gj0-njvRJX379drS-ay5_nP9Znlw222pZqmtpeKRs6bbsN6kgULEQk6CFQBAcI27ilVgXXdmior7TWWuM2EYw1K_F-kb3N859j9eJv6lhT_dGrvte6N6Z3FaUWVMgzc6bob3M6YL73CvxDwn5J2NeE_UPCtazEh0dl5IBjrPOHxE9E7dxgoFUVpxcc16dpR_k_B8-Iv1tIEWePu1yFr39pUF3dnGqdBfMPcvGVeA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Weides, Simon N</creator><creator>Moeck, Inga S</creator><creator>Schmitt, Douglas R</creator><creator>Majorowicz, Jacek A</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20141101</creationdate><title>integrative geothermal resource assessment study for the siliciclastic Granite Wash Unit, northwestern Alberta (Canada)</title><author>Weides, Simon N ; Moeck, Inga S ; Schmitt, Douglas R ; Majorowicz, Jacek A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-62e47116c5265ba2feec60fae070cef080a0dfde41c845a3e742646638bf0363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biogeosciences</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental science</topic><topic>Environmental Science and Engineering</topic><topic>Exact sciences and technology</topic><topic>friction</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Geothermal power</topic><topic>Geothermal resources</topic><topic>Geothermics</topic><topic>Granite</topic><topic>greenhouses</topic><topic>heat</topic><topic>Heating</topic><topic>Hydrology/Water Resources</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>permeability</topic><topic>Porosity</topic><topic>Reservoirs</topic><topic>Stress analysis</topic><topic>temperature</topic><topic>Terrestrial Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weides, Simon N</creatorcontrib><creatorcontrib>Moeck, Inga S</creatorcontrib><creatorcontrib>Schmitt, Douglas R</creatorcontrib><creatorcontrib>Majorowicz, Jacek A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weides, Simon N</au><au>Moeck, Inga S</au><au>Schmitt, Douglas R</au><au>Majorowicz, Jacek A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>integrative geothermal resource assessment study for the siliciclastic Granite Wash Unit, northwestern Alberta (Canada)</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>72</volume><issue>10</issue><spage>4141</spage><epage>4154</epage><pages>4141-4154</pages><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>This study explores the siliciclastic Granite Wash Unit in northwestern Alberta as a potential geothermal reservoir. The approach covers regional 3D structural geological modelling of a 90 km × 70 km area based on well log and legacy 2D seismic data. The fault strike was interpreted from lineaments, which were identified with the refined trend surface analysis method. The stress state of the Granite Wash reservoirs was determined by an integrated approach of 3D fault modelling, stress ratio definition based on frictional constraints, and slip tendency analysis. The results show that the best site for a geothermal application is located in the southwestern study area, where the highest temperatures (above 70 °C) coincide with the largest thickness (above 20 m) and zones of elevated porosity and permeability. The integrated stress analysis indicates an in situ stress regime from normal to strike-slip faulting maintaining a non-critically stressed reservoir or faults therein, assuming a friction coefficient of 0.7. The granite wash reservoirs could be used for heating of greenhouses, domestic warm water provision and district heating.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12665-014-3309-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2014-11, Vol.72 (10), p.4141-4154
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_1772273378
source SpringerLink Journals - AutoHoldings
subjects Biogeosciences
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environmental science
Environmental Science and Engineering
Exact sciences and technology
friction
Geochemistry
Geology
Geophysics
Geothermal power
Geothermal resources
Geothermics
Granite
greenhouses
heat
Heating
Hydrology/Water Resources
Mathematical models
Original Article
permeability
Porosity
Reservoirs
Stress analysis
temperature
Terrestrial Pollution
title integrative geothermal resource assessment study for the siliciclastic Granite Wash Unit, northwestern Alberta (Canada)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=integrative%20geothermal%20resource%20assessment%20study%20for%20the%20siliciclastic%20Granite%20Wash%20Unit,%20northwestern%20Alberta%20(Canada)&rft.jtitle=Environmental%20earth%20sciences&rft.au=Weides,%20Simon%20N&rft.date=2014-11-01&rft.volume=72&rft.issue=10&rft.spage=4141&rft.epage=4154&rft.pages=4141-4154&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-014-3309-3&rft_dat=%3Cproquest_cross%3E3980777811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772273378&rft_id=info:pmid/&rfr_iscdi=true