Solid holography and massive gravity

A bstract Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-02, Vol.2016 (2), p.1, Article 114
Hauptverfasser: Alberte, Lasma, Baggioli, Matteo, Khmelnitsky, Andrei, Pujolàs, Oriol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1
container_title The journal of high energy physics
container_volume 2016
creator Alberte, Lasma
Baggioli, Matteo
Khmelnitsky, Andrei
Pujolàs, Oriol
description A bstract Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids . This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.
doi_str_mv 10.1007/JHEP02(2016)114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1771604938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3975416441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b46d2aaab44f609b20b25ec1d12e46d71330a67bca8cdb3f2d2b843bb301e75b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdnrwU96KHuvSRt2qOMzSkDBfUckjbdOrqmJtug_70Z9bCLp_d47_sDPoTcIjwhgJi8LWYfQB8oYPqIyM_ICIHmccZFfn6yX5Ir7zcAmGAOI3L_aZu6jNa2sSununUfqbaMtsr7-mCicDrUu_6aXFSq8ebmb47J93z2NV3Ey_eX1-nzMi5YgrtY87SkSinNeZVCrilompgCS6QmvAQyBioVulBZUWpW0ZLqjDOtGaARiWZjcjfkds7-7I3fyY3duzZUShQCU-A5y4JqMqgKZ713ppKdq7fK9RJBHlHIAYU8opABRXDA4PBB2a6MO8n9x_IL1yZfRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771604938</pqid></control><display><type>article</type><title>Solid holography and massive gravity</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><creator>Alberte, Lasma ; Baggioli, Matteo ; Khmelnitsky, Andrei ; Pujolàs, Oriol</creator><creatorcontrib>Alberte, Lasma ; Baggioli, Matteo ; Khmelnitsky, Andrei ; Pujolàs, Oriol</creatorcontrib><description>A bstract Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids . This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2016)114</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2016-02, Vol.2016 (2), p.1, Article 114</ispartof><rights>The Author(s) 2016</rights><rights>SISSA, Trieste, Italy 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b46d2aaab44f609b20b25ec1d12e46d71330a67bca8cdb3f2d2b843bb301e75b3</citedby><cites>FETCH-LOGICAL-c351t-b46d2aaab44f609b20b25ec1d12e46d71330a67bca8cdb3f2d2b843bb301e75b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP02(2016)114$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP02(2016)114$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Alberte, Lasma</creatorcontrib><creatorcontrib>Baggioli, Matteo</creatorcontrib><creatorcontrib>Khmelnitsky, Andrei</creatorcontrib><creatorcontrib>Pujolàs, Oriol</creatorcontrib><title>Solid holography and massive gravity</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids . This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM9LwzAUx4MoOKdnrwU96KHuvSRt2qOMzSkDBfUckjbdOrqmJtug_70Z9bCLp_d47_sDPoTcIjwhgJi8LWYfQB8oYPqIyM_ICIHmccZFfn6yX5Ir7zcAmGAOI3L_aZu6jNa2sSununUfqbaMtsr7-mCicDrUu_6aXFSq8ebmb47J93z2NV3Ey_eX1-nzMi5YgrtY87SkSinNeZVCrilompgCS6QmvAQyBioVulBZUWpW0ZLqjDOtGaARiWZjcjfkds7-7I3fyY3duzZUShQCU-A5y4JqMqgKZ713ppKdq7fK9RJBHlHIAYU8opABRXDA4PBB2a6MO8n9x_IL1yZfRA</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Alberte, Lasma</creator><creator>Baggioli, Matteo</creator><creator>Khmelnitsky, Andrei</creator><creator>Pujolàs, Oriol</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160201</creationdate><title>Solid holography and massive gravity</title><author>Alberte, Lasma ; Baggioli, Matteo ; Khmelnitsky, Andrei ; Pujolàs, Oriol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b46d2aaab44f609b20b25ec1d12e46d71330a67bca8cdb3f2d2b843bb301e75b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alberte, Lasma</creatorcontrib><creatorcontrib>Baggioli, Matteo</creatorcontrib><creatorcontrib>Khmelnitsky, Andrei</creatorcontrib><creatorcontrib>Pujolàs, Oriol</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alberte, Lasma</au><au>Baggioli, Matteo</au><au>Khmelnitsky, Andrei</au><au>Pujolàs, Oriol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid holography and massive gravity</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>2016</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>114</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids . This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP02(2016)114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2016-02, Vol.2016 (2), p.1, Article 114
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_1771604938
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection
subjects Classical and Quantum Gravitation
Elementary Particles
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
title Solid holography and massive gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%20holography%20and%20massive%20gravity&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Alberte,%20Lasma&rft.date=2016-02-01&rft.volume=2016&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=114&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2016)114&rft_dat=%3Cproquest_cross%3E3975416441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771604938&rft_id=info:pmid/&rfr_iscdi=true