Reduction of a marker of oxidative stress with enhancement of iron utilization by erythropoiesis activation following epoetin beta pegol administration in iron-loaded db/db mice

Iron, an essential element for various biological processes, can induce oxidative stress. We hypothesized that iron utilization for erythropoiesis, stimulated by epoetin beta pegol (C.E.R.A.), a long-acting erythropoiesis-stimulating agent, contributes to the reduction of iron-induced oxidative stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hematology 2016-03, Vol.103 (3), p.262-273
Hauptverfasser: Noguchi-Sasaki, Mariko, Sasaki, Yusuke, Matsuo-Tezuka, Yukari, Yasuno, Hideyuki, Kurasawa, Mitsue, Yorozu, Keigo, Shimonaka, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron, an essential element for various biological processes, can induce oxidative stress. We hypothesized that iron utilization for erythropoiesis, stimulated by epoetin beta pegol (C.E.R.A.), a long-acting erythropoiesis-stimulating agent, contributes to the reduction of iron-induced oxidative stress. We first investigated the sensitivity of several biomarkers to detect oxidative stress in mice by altering the amount of total body iron; we then investigated whether C.E.R.A. ameliorated oxidative stress through enhanced iron utilization. We treated db/db mice with intravenous iron-dextran and evaluated several biomarkers of iron-induced oxidative stress. In mice loaded with 5 mg/head iron, hepatic iron content was elevated and the oxidative stress marker d-ROMs (serum derivatives of reactive oxygen metabolites) was increased, whereas urinary 8-hydroxy-2′-deoxyguanosine and serum malondialdehyde were not, indicating that d-ROMs is a sensitive marker of iron-induced oxidative stress. To investigate whether C.E.R.A. ameliorated oxidative stress, db/db mice were intravenously administered iron-dextran or dextran only, followed by C.E.R.A. Hemoglobin level increased, while hepatic iron content decreased after C.E.R.A. treatment. Serum d-ROMs decreased after C.E.R.A. treatment in the iron-dextran-treated group. Our results suggest that C.E.R.A. promotes iron utilization for erythropoiesis through mobilization of hepatic iron storage, leading to a decrease in serum oxidative stress markers in iron-loaded db/db mice.
ISSN:0925-5710
1865-3774
DOI:10.1007/s12185-015-1929-3