Thermal Conductivity Measurement of Liquid-Quenched Higher Manganese Silicides
Higher manganese silicides (HMSs, MnSi γ , γ ∼ 1.75) show promise for use as low-cost and environmentally friendly thermoelectric materials. To reduce their thermal conductivity, we partially substituted the Mn site with heavy elements using liquid quenching. Fabricated samples possess a curly ribb...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2016-03, Vol.45 (3), p.1821-1826 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1826 |
---|---|
container_issue | 3 |
container_start_page | 1821 |
container_title | Journal of electronic materials |
container_volume | 45 |
creator | Nishino, Shunsuke Miyata, Masanobu Ohdaira, Keisuke Koyano, Mikio Takeuchi, Tsunehiro |
description | Higher manganese silicides (HMSs, MnSi
γ
,
γ
∼ 1.75) show promise for use as low-cost and environmentally friendly thermoelectric materials. To reduce their thermal conductivity, we partially substituted the Mn site with heavy elements using liquid quenching. Fabricated samples possess a curly ribbon-shape with about a 10-
μ
m thickness and 1-mm width, with high surface roughness. In this study, we determined the thermal conductivity of the curly-ribbon-shaped samples using two independent methods: the 3
ω
method with two heat flow models, and the steady-state method using a physical property measurement system (PPMS; Quantum Design). We succeeded in estimating the thermal conductivity at the temperature range of 100–200 K using the PPMS. The estimated thermal conductivity of non-doped HMSs shows a constant value without temperature dependence of 2.2 ± 0.8 W K
−1
m
−1
at 100–200 K. The difference of thermal conductivities of W-doped and non-doped HMSs was not recognized within the measurement error. |
doi_str_mv | 10.1007/s11664-015-4236-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1771400307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3974617151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-bdf5341d7d59852be335319f381fa612e5ebd3047459b44027bb8284265109b23</originalsourceid><addsrcrecordid>eNp1kEtLw0AURgdRsFZ_gLuA69F755HHUopaoVXECu6GJHPTTmmTdiYp9N-bEhduXN3NOd-Fw9gtwj0CJA8BMY4VB9RcCRlzOGMj1EpyTOPvczYCGSPXQupLdhXCGnoQUxyxt8WK_DbfRJOmtl3ZuoNrj9Gc8tB52lLdRk0Vzdy-c5Z_dFSXK7LR1C17K5rn9TKvKVD06TaudJbCNbuo8k2gm987Zl_PT4vJlM_eX14njzNeKi1aXthKS4U2sTpLtShISi0xq2SKVR6jIE2FlaASpbNCKRBJUaQiVSLWCFkh5JjdDbs73-w7Cq1ZN52v-5cGkwQVgISkp3CgSt-E4KkyO--2uT8aBHPKZoZspq9hTtkM9I4YnNCz9ZL8n-V_pR9UR26B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771400307</pqid></control><display><type>article</type><title>Thermal Conductivity Measurement of Liquid-Quenched Higher Manganese Silicides</title><source>SpringerLink</source><creator>Nishino, Shunsuke ; Miyata, Masanobu ; Ohdaira, Keisuke ; Koyano, Mikio ; Takeuchi, Tsunehiro</creator><creatorcontrib>Nishino, Shunsuke ; Miyata, Masanobu ; Ohdaira, Keisuke ; Koyano, Mikio ; Takeuchi, Tsunehiro</creatorcontrib><description>Higher manganese silicides (HMSs, MnSi
γ
,
γ
∼ 1.75) show promise for use as low-cost and environmentally friendly thermoelectric materials. To reduce their thermal conductivity, we partially substituted the Mn site with heavy elements using liquid quenching. Fabricated samples possess a curly ribbon-shape with about a 10-
μ
m thickness and 1-mm width, with high surface roughness. In this study, we determined the thermal conductivity of the curly-ribbon-shaped samples using two independent methods: the 3
ω
method with two heat flow models, and the steady-state method using a physical property measurement system (PPMS; Quantum Design). We succeeded in estimating the thermal conductivity at the temperature range of 100–200 K using the PPMS. The estimated thermal conductivity of non-doped HMSs shows a constant value without temperature dependence of 2.2 ± 0.8 W K
−1
m
−1
at 100–200 K. The difference of thermal conductivities of W-doped and non-doped HMSs was not recognized within the measurement error.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-015-4236-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conductivity ; Electric power ; Electronics and Microelectronics ; Instrumentation ; Liquids ; Manganese compounds ; Materials Science ; Measurement techniques ; Optical and Electronic Materials ; Quenching ; Solid State Physics ; Thermal energy</subject><ispartof>Journal of electronic materials, 2016-03, Vol.45 (3), p.1821-1826</ispartof><rights>The Minerals, Metals & Materials Society 2015</rights><rights>The Minerals, Metals & Materials Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-bdf5341d7d59852be335319f381fa612e5ebd3047459b44027bb8284265109b23</citedby><cites>FETCH-LOGICAL-c452t-bdf5341d7d59852be335319f381fa612e5ebd3047459b44027bb8284265109b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-015-4236-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-015-4236-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nishino, Shunsuke</creatorcontrib><creatorcontrib>Miyata, Masanobu</creatorcontrib><creatorcontrib>Ohdaira, Keisuke</creatorcontrib><creatorcontrib>Koyano, Mikio</creatorcontrib><creatorcontrib>Takeuchi, Tsunehiro</creatorcontrib><title>Thermal Conductivity Measurement of Liquid-Quenched Higher Manganese Silicides</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Higher manganese silicides (HMSs, MnSi
γ
,
γ
∼ 1.75) show promise for use as low-cost and environmentally friendly thermoelectric materials. To reduce their thermal conductivity, we partially substituted the Mn site with heavy elements using liquid quenching. Fabricated samples possess a curly ribbon-shape with about a 10-
μ
m thickness and 1-mm width, with high surface roughness. In this study, we determined the thermal conductivity of the curly-ribbon-shaped samples using two independent methods: the 3
ω
method with two heat flow models, and the steady-state method using a physical property measurement system (PPMS; Quantum Design). We succeeded in estimating the thermal conductivity at the temperature range of 100–200 K using the PPMS. The estimated thermal conductivity of non-doped HMSs shows a constant value without temperature dependence of 2.2 ± 0.8 W K
−1
m
−1
at 100–200 K. The difference of thermal conductivities of W-doped and non-doped HMSs was not recognized within the measurement error.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conductivity</subject><subject>Electric power</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Liquids</subject><subject>Manganese compounds</subject><subject>Materials Science</subject><subject>Measurement techniques</subject><subject>Optical and Electronic Materials</subject><subject>Quenching</subject><subject>Solid State Physics</subject><subject>Thermal energy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLw0AURgdRsFZ_gLuA69F755HHUopaoVXECu6GJHPTTmmTdiYp9N-bEhduXN3NOd-Fw9gtwj0CJA8BMY4VB9RcCRlzOGMj1EpyTOPvczYCGSPXQupLdhXCGnoQUxyxt8WK_DbfRJOmtl3ZuoNrj9Gc8tB52lLdRk0Vzdy-c5Z_dFSXK7LR1C17K5rn9TKvKVD06TaudJbCNbuo8k2gm987Zl_PT4vJlM_eX14njzNeKi1aXthKS4U2sTpLtShISi0xq2SKVR6jIE2FlaASpbNCKRBJUaQiVSLWCFkh5JjdDbs73-w7Cq1ZN52v-5cGkwQVgISkp3CgSt-E4KkyO--2uT8aBHPKZoZspq9hTtkM9I4YnNCz9ZL8n-V_pR9UR26B</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Nishino, Shunsuke</creator><creator>Miyata, Masanobu</creator><creator>Ohdaira, Keisuke</creator><creator>Koyano, Mikio</creator><creator>Takeuchi, Tsunehiro</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160301</creationdate><title>Thermal Conductivity Measurement of Liquid-Quenched Higher Manganese Silicides</title><author>Nishino, Shunsuke ; Miyata, Masanobu ; Ohdaira, Keisuke ; Koyano, Mikio ; Takeuchi, Tsunehiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-bdf5341d7d59852be335319f381fa612e5ebd3047459b44027bb8284265109b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conductivity</topic><topic>Electric power</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Liquids</topic><topic>Manganese compounds</topic><topic>Materials Science</topic><topic>Measurement techniques</topic><topic>Optical and Electronic Materials</topic><topic>Quenching</topic><topic>Solid State Physics</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishino, Shunsuke</creatorcontrib><creatorcontrib>Miyata, Masanobu</creatorcontrib><creatorcontrib>Ohdaira, Keisuke</creatorcontrib><creatorcontrib>Koyano, Mikio</creatorcontrib><creatorcontrib>Takeuchi, Tsunehiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishino, Shunsuke</au><au>Miyata, Masanobu</au><au>Ohdaira, Keisuke</au><au>Koyano, Mikio</au><au>Takeuchi, Tsunehiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity Measurement of Liquid-Quenched Higher Manganese Silicides</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>45</volume><issue>3</issue><spage>1821</spage><epage>1826</epage><pages>1821-1826</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Higher manganese silicides (HMSs, MnSi
γ
,
γ
∼ 1.75) show promise for use as low-cost and environmentally friendly thermoelectric materials. To reduce their thermal conductivity, we partially substituted the Mn site with heavy elements using liquid quenching. Fabricated samples possess a curly ribbon-shape with about a 10-
μ
m thickness and 1-mm width, with high surface roughness. In this study, we determined the thermal conductivity of the curly-ribbon-shaped samples using two independent methods: the 3
ω
method with two heat flow models, and the steady-state method using a physical property measurement system (PPMS; Quantum Design). We succeeded in estimating the thermal conductivity at the temperature range of 100–200 K using the PPMS. The estimated thermal conductivity of non-doped HMSs shows a constant value without temperature dependence of 2.2 ± 0.8 W K
−1
m
−1
at 100–200 K. The difference of thermal conductivities of W-doped and non-doped HMSs was not recognized within the measurement error.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-015-4236-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2016-03, Vol.45 (3), p.1821-1826 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_1771400307 |
source | SpringerLink |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Conductivity Electric power Electronics and Microelectronics Instrumentation Liquids Manganese compounds Materials Science Measurement techniques Optical and Electronic Materials Quenching Solid State Physics Thermal energy |
title | Thermal Conductivity Measurement of Liquid-Quenched Higher Manganese Silicides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20Measurement%20of%20Liquid-Quenched%20Higher%20Manganese%20Silicides&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Nishino,%20Shunsuke&rft.date=2016-03-01&rft.volume=45&rft.issue=3&rft.spage=1821&rft.epage=1826&rft.pages=1821-1826&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-015-4236-0&rft_dat=%3Cproquest_cross%3E3974617151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771400307&rft_id=info:pmid/&rfr_iscdi=true |