Approximate solutions of multiobjective optimization problems
This paper provides some new results on approximate Pareto solutions of a multiobjective optimization problem involving nonsmooth functions. We establish Fritz-John type necessary conditions and sufficient conditions for approximate Pareto solutions of such a problem. As a consequence, we obtain Fri...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2016-03, Vol.20 (1), p.187-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 1 |
container_start_page | 187 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 20 |
creator | Chuong, Thai Doan Kim, Do Sang |
description | This paper provides some new results on
approximate Pareto solutions
of a multiobjective optimization problem involving nonsmooth functions. We establish Fritz-John type necessary conditions and sufficient conditions for approximate Pareto solutions of such a problem. As a consequence, we obtain Fritz-John type necessary conditions for (weakly) Pareto solutions of the considered problem by exploiting the corresponding results of the approximate Pareto solutions. In addition, we state a dual problem formulated in an approximate form to the reference problem and explore duality relations between them. |
doi_str_mv | 10.1007/s11117-015-0350-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1771299118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3974238861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7bed7bfa7468a371211d73aa32f103fccfd19be92e1fccaa79d7c0b0a4795add3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9GZZLtpDh6WxX-w4EXPIW0T6dJuatKK-umdUg9ezCUzzPu9YR5jlwjXCKBuEtJTHDDnIHPgxRFbYK4E16LAY6plkXMUWpyys5T2AEStYMFuN30fw2fT2cFlKbTj0IRDyoLPurGluty7amg-XBb6oemabzvNM0LK1nXpnJ142yZ38fsv2ev93cv2ke-eH562mx2vJK4HrkpXq9JbtVoXVioUiLWS1krhEaSvKl-jLp0WDqmxVulaVVCCXSmd27qWS3Y1-9Li99GlwezDGA-00qAiP60RC1LhrKpiSCk6b_pIh8Uvg2CmlMyckqGUzJSSmRgxM4m0hzcX_zj_C_0AZeBruQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771299118</pqid></control><display><type>article</type><title>Approximate solutions of multiobjective optimization problems</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Chuong, Thai Doan ; Kim, Do Sang</creator><creatorcontrib>Chuong, Thai Doan ; Kim, Do Sang</creatorcontrib><description>This paper provides some new results on
approximate Pareto solutions
of a multiobjective optimization problem involving nonsmooth functions. We establish Fritz-John type necessary conditions and sufficient conditions for approximate Pareto solutions of such a problem. As a consequence, we obtain Fritz-John type necessary conditions for (weakly) Pareto solutions of the considered problem by exploiting the corresponding results of the approximate Pareto solutions. In addition, we state a dual problem formulated in an approximate form to the reference problem and explore duality relations between them.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-015-0350-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied mathematics ; Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fourier Analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Optimization ; Potential Theory ; Scholarships & fellowships</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2016-03, Vol.20 (1), p.187-207</ispartof><rights>Springer Basel 2015</rights><rights>Springer International Publishing 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7bed7bfa7468a371211d73aa32f103fccfd19be92e1fccaa79d7c0b0a4795add3</citedby><cites>FETCH-LOGICAL-c316t-7bed7bfa7468a371211d73aa32f103fccfd19be92e1fccaa79d7c0b0a4795add3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-015-0350-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-015-0350-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Chuong, Thai Doan</creatorcontrib><creatorcontrib>Kim, Do Sang</creatorcontrib><title>Approximate solutions of multiobjective optimization problems</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>This paper provides some new results on
approximate Pareto solutions
of a multiobjective optimization problem involving nonsmooth functions. We establish Fritz-John type necessary conditions and sufficient conditions for approximate Pareto solutions of such a problem. As a consequence, we obtain Fritz-John type necessary conditions for (weakly) Pareto solutions of the considered problem by exploiting the corresponding results of the approximate Pareto solutions. In addition, we state a dual problem formulated in an approximate form to the reference problem and explore duality relations between them.</description><subject>Applied mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Optimization</subject><subject>Potential Theory</subject><subject>Scholarships & fellowships</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9GZZLtpDh6WxX-w4EXPIW0T6dJuatKK-umdUg9ezCUzzPu9YR5jlwjXCKBuEtJTHDDnIHPgxRFbYK4E16LAY6plkXMUWpyys5T2AEStYMFuN30fw2fT2cFlKbTj0IRDyoLPurGluty7amg-XBb6oemabzvNM0LK1nXpnJ142yZ38fsv2ev93cv2ke-eH562mx2vJK4HrkpXq9JbtVoXVioUiLWS1krhEaSvKl-jLp0WDqmxVulaVVCCXSmd27qWS3Y1-9Li99GlwezDGA-00qAiP60RC1LhrKpiSCk6b_pIh8Uvg2CmlMyckqGUzJSSmRgxM4m0hzcX_zj_C_0AZeBruQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Chuong, Thai Doan</creator><creator>Kim, Do Sang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160301</creationdate><title>Approximate solutions of multiobjective optimization problems</title><author>Chuong, Thai Doan ; Kim, Do Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7bed7bfa7468a371211d73aa32f103fccfd19be92e1fccaa79d7c0b0a4795add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Optimization</topic><topic>Potential Theory</topic><topic>Scholarships & fellowships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuong, Thai Doan</creatorcontrib><creatorcontrib>Kim, Do Sang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuong, Thai Doan</au><au>Kim, Do Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate solutions of multiobjective optimization problems</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>20</volume><issue>1</issue><spage>187</spage><epage>207</epage><pages>187-207</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>This paper provides some new results on
approximate Pareto solutions
of a multiobjective optimization problem involving nonsmooth functions. We establish Fritz-John type necessary conditions and sufficient conditions for approximate Pareto solutions of such a problem. As a consequence, we obtain Fritz-John type necessary conditions for (weakly) Pareto solutions of the considered problem by exploiting the corresponding results of the approximate Pareto solutions. In addition, we state a dual problem formulated in an approximate form to the reference problem and explore duality relations between them.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-015-0350-8</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2016-03, Vol.20 (1), p.187-207 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_1771299118 |
source | EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Applied mathematics Calculus of Variations and Optimal Control Optimization Econometrics Fourier Analysis Mathematical functions Mathematics Mathematics and Statistics Operator Theory Optimization Potential Theory Scholarships & fellowships |
title | Approximate solutions of multiobjective optimization problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20solutions%20of%20multiobjective%20optimization%20problems&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Chuong,%20Thai%20Doan&rft.date=2016-03-01&rft.volume=20&rft.issue=1&rft.spage=187&rft.epage=207&rft.pages=187-207&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-015-0350-8&rft_dat=%3Cproquest_cross%3E3974238861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771299118&rft_id=info:pmid/&rfr_iscdi=true |