A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems

Multimodal problems are related to locating multiple, redundant global optima, as opposed to single solution. In practice, generally in engineering problems it is desired to obtain many redundant solutions instead of single global optima since the available resources cannot be enough or not possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems and applications 2015-03, Vol.7 (4), p.1-10
1. Verfasser: Altinoz, O. Tolga
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 4
container_start_page 1
container_title International journal of intelligent systems and applications
container_volume 7
creator Altinoz, O. Tolga
description Multimodal problems are related to locating multiple, redundant global optima, as opposed to single solution. In practice, generally in engineering problems it is desired to obtain many redundant solutions instead of single global optima since the available resources cannot be enough or not possible to implement the solution in real-life. Hence, as a toolbox for finding multimodal solutions, modified single objective algorithms can able to use. As one of the fundamental modification, from one of the niching schemes, crowding method was applied to Differential Evolution (DE) algorithm to solve multimodal problems and frequently preferred to compared with developed methods. Therefore, in this study, eight different DE are considered/evaluated on ten benchmark problems to provide best possible DE algorithm for crowding operation. In conclusion, the results show that the time varying scale mutation DE algorithm outperforms against other DE algorithms on benchmark problems.
doi_str_mv 10.5815/ijisa.2015.04.01
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1770072985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3970118761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1111-23922873fda6a71db460bc8c8f70b6836dbdfd3068ea2a3beaaedfa9d742abf53</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOObuHgueW1-StkmPo04nTOZBwVtIm2RmtE1NWkX_ertN_F3e7_Dx3uND6BpDknGc3dq9DTIhgLME0gTwGZoRYGlcQMbP_3v6dokWIexhSs5TjosZEsuodG0vvQ2ui5yJSu--lO120Z01RnvdDVY20erTNeNgJ2TZ7Jy3w3sbIuN89DQ2g22dmphtPzX7I4_Ys3dVo9twhS6MbIJe_M05er1fvZTreLN9eCyXm7jGU2JCC0I4o0bJXDKsqjSHquY1NwyqnNNcVcooOr2tJZG00lJqZWShWEpkZTI6Rzenvb13H6MOg9i70XfTSYEZA2Ck4AcKTlTtXQheG9F720r_LTCIg0lxNCkOJgWkAjD9BTXAabk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770072985</pqid></control><display><type>article</type><title>A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Altinoz, O. Tolga</creator><creatorcontrib>Altinoz, O. Tolga ; Ankara University, Department of Electrical and Electronics Engineering, Ankara, Turkey</creatorcontrib><description>Multimodal problems are related to locating multiple, redundant global optima, as opposed to single solution. In practice, generally in engineering problems it is desired to obtain many redundant solutions instead of single global optima since the available resources cannot be enough or not possible to implement the solution in real-life. Hence, as a toolbox for finding multimodal solutions, modified single objective algorithms can able to use. As one of the fundamental modification, from one of the niching schemes, crowding method was applied to Differential Evolution (DE) algorithm to solve multimodal problems and frequently preferred to compared with developed methods. Therefore, in this study, eight different DE are considered/evaluated on ten benchmark problems to provide best possible DE algorithm for crowding operation. In conclusion, the results show that the time varying scale mutation DE algorithm outperforms against other DE algorithms on benchmark problems.</description><identifier>ISSN: 2074-904X</identifier><identifier>EISSN: 2074-9058</identifier><identifier>DOI: 10.5815/ijisa.2015.04.01</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><ispartof>International journal of intelligent systems and applications, 2015-03, Vol.7 (4), p.1-10</ispartof><rights>Copyright Modern Education and Computer Science Press Mar 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Altinoz, O. Tolga</creatorcontrib><creatorcontrib>Ankara University, Department of Electrical and Electronics Engineering, Ankara, Turkey</creatorcontrib><title>A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems</title><title>International journal of intelligent systems and applications</title><description>Multimodal problems are related to locating multiple, redundant global optima, as opposed to single solution. In practice, generally in engineering problems it is desired to obtain many redundant solutions instead of single global optima since the available resources cannot be enough or not possible to implement the solution in real-life. Hence, as a toolbox for finding multimodal solutions, modified single objective algorithms can able to use. As one of the fundamental modification, from one of the niching schemes, crowding method was applied to Differential Evolution (DE) algorithm to solve multimodal problems and frequently preferred to compared with developed methods. Therefore, in this study, eight different DE are considered/evaluated on ten benchmark problems to provide best possible DE algorithm for crowding operation. In conclusion, the results show that the time varying scale mutation DE algorithm outperforms against other DE algorithms on benchmark problems.</description><issn>2074-904X</issn><issn>2074-9058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kMFLwzAUh4MoOObuHgueW1-StkmPo04nTOZBwVtIm2RmtE1NWkX_ertN_F3e7_Dx3uND6BpDknGc3dq9DTIhgLME0gTwGZoRYGlcQMbP_3v6dokWIexhSs5TjosZEsuodG0vvQ2ui5yJSu--lO120Z01RnvdDVY20erTNeNgJ2TZ7Jy3w3sbIuN89DQ2g22dmphtPzX7I4_Ys3dVo9twhS6MbIJe_M05er1fvZTreLN9eCyXm7jGU2JCC0I4o0bJXDKsqjSHquY1NwyqnNNcVcooOr2tJZG00lJqZWShWEpkZTI6Rzenvb13H6MOg9i70XfTSYEZA2Ck4AcKTlTtXQheG9F720r_LTCIg0lxNCkOJgWkAjD9BTXAabk</recordid><startdate>20150308</startdate><enddate>20150308</enddate><creator>Altinoz, O. Tolga</creator><general>Modern Education and Computer Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20150308</creationdate><title>A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems</title><author>Altinoz, O. Tolga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1111-23922873fda6a71db460bc8c8f70b6836dbdfd3068ea2a3beaaedfa9d742abf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Altinoz, O. Tolga</creatorcontrib><creatorcontrib>Ankara University, Department of Electrical and Electronics Engineering, Ankara, Turkey</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altinoz, O. Tolga</au><aucorp>Ankara University, Department of Electrical and Electronics Engineering, Ankara, Turkey</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems</atitle><jtitle>International journal of intelligent systems and applications</jtitle><date>2015-03-08</date><risdate>2015</risdate><volume>7</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2074-904X</issn><eissn>2074-9058</eissn><abstract>Multimodal problems are related to locating multiple, redundant global optima, as opposed to single solution. In practice, generally in engineering problems it is desired to obtain many redundant solutions instead of single global optima since the available resources cannot be enough or not possible to implement the solution in real-life. Hence, as a toolbox for finding multimodal solutions, modified single objective algorithms can able to use. As one of the fundamental modification, from one of the niching schemes, crowding method was applied to Differential Evolution (DE) algorithm to solve multimodal problems and frequently preferred to compared with developed methods. Therefore, in this study, eight different DE are considered/evaluated on ten benchmark problems to provide best possible DE algorithm for crowding operation. In conclusion, the results show that the time varying scale mutation DE algorithm outperforms against other DE algorithms on benchmark problems.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><doi>10.5815/ijisa.2015.04.01</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2074-904X
ispartof International journal of intelligent systems and applications, 2015-03, Vol.7 (4), p.1-10
issn 2074-904X
2074-9058
language eng
recordid cdi_proquest_journals_1770072985
source EZB-FREE-00999 freely available EZB journals
title A Comparison of Crowding Differential Evolution Algorithms for Multimodal Optimization Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Crowding%20Differential%20Evolution%20Algorithms%20for%20Multimodal%20Optimization%20Problems&rft.jtitle=International%20journal%20of%20intelligent%20systems%20and%20applications&rft.au=Altinoz,%20O.%20Tolga&rft.aucorp=Ankara%20University,%20Department%20of%20Electrical%20and%20Electronics%20Engineering,%20Ankara,%20Turkey&rft.date=2015-03-08&rft.volume=7&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2074-904X&rft.eissn=2074-9058&rft_id=info:doi/10.5815/ijisa.2015.04.01&rft_dat=%3Cproquest_cross%3E3970118761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770072985&rft_id=info:pmid/&rfr_iscdi=true