A dual approach to inference for partially identified econometric models

This paper considers inference for the set ΘI of parameter values that minimize a criterion function. Chernozhukov et al. (2007) (CHT) develop a general theory of estimation and inference using the level-set of a criterion function. We establish a dual relationship between the level-set estimator an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2016-05, Vol.192 (1), p.269-290
1. Verfasser: Kaido, Hiroaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 1
container_start_page 269
container_title Journal of econometrics
container_volume 192
creator Kaido, Hiroaki
description This paper considers inference for the set ΘI of parameter values that minimize a criterion function. Chernozhukov et al. (2007) (CHT) develop a general theory of estimation and inference using the level-set of a criterion function. We establish a dual relationship between the level-set estimator and its support function and show that the properly normalized support function provides alternative Wald-type inference methods. These methods can be used to obtain confidence sets for ΘI and points inside it. For models with finitely many moment inequalities, we show that our Wald-type statistic is asymptotically equivalent to CHT’s statistic under regularity conditions.
doi_str_mv 10.1016/j.jeconom.2015.12.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1770071441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407615003164</els_id><sourcerecordid>3970101241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-52e321aac0ed423bab74d3a1bc38a52e33917559055c4b5c92717d52afbf593e3</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BCHguTWTx6Y9ybL4ggUveg5pMsWUblPTrrDf3pbu3dMc5v-Y-RFyDywHBpvHJm_QxS4ecs5A5cBzBvqCrKDQPNsUpbokKyaYzCTTm2tyMwwNY0zJQqzI25b6o22p7fsUrfumY6ShqzFh55DWMdHepjHYtj3R4LEbQx3Q06UPxxQcPUSP7XBLrmrbDnh3nmvy9fL8uXvL9h-v77vtPnOSwZgpjoKDtY6hl1xUttLSCwuVE4Wdl6IErVTJlHKyUq7kGrRX3NZVrUqBYk0eltzp3p8jDqNp4jF1U6UBrRnTICVMKrWoXIrDkLA2fQoHm04GmJmhmcacoZkZmgFuJmiT72nxTR_hb8BkBhdmFD4kdKPxMfyT8Adi93f3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770071441</pqid></control><display><type>article</type><title>A dual approach to inference for partially identified econometric models</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kaido, Hiroaki</creator><creatorcontrib>Kaido, Hiroaki</creatorcontrib><description>This paper considers inference for the set ΘI of parameter values that minimize a criterion function. Chernozhukov et al. (2007) (CHT) develop a general theory of estimation and inference using the level-set of a criterion function. We establish a dual relationship between the level-set estimator and its support function and show that the properly normalized support function provides alternative Wald-type inference methods. These methods can be used to obtain confidence sets for ΘI and points inside it. For models with finitely many moment inequalities, we show that our Wald-type statistic is asymptotically equivalent to CHT’s statistic under regularity conditions.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2015.12.017</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Criterion function ; Econometrics ; Estimating techniques ; Mathematical functions ; Mathematical models ; Partial identification ; Set theory ; Studies ; Support function</subject><ispartof>Journal of econometrics, 2016-05, Vol.192 (1), p.269-290</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. May 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-52e321aac0ed423bab74d3a1bc38a52e33917559055c4b5c92717d52afbf593e3</citedby><cites>FETCH-LOGICAL-c401t-52e321aac0ed423bab74d3a1bc38a52e33917559055c4b5c92717d52afbf593e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2015.12.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kaido, Hiroaki</creatorcontrib><title>A dual approach to inference for partially identified econometric models</title><title>Journal of econometrics</title><description>This paper considers inference for the set ΘI of parameter values that minimize a criterion function. Chernozhukov et al. (2007) (CHT) develop a general theory of estimation and inference using the level-set of a criterion function. We establish a dual relationship between the level-set estimator and its support function and show that the properly normalized support function provides alternative Wald-type inference methods. These methods can be used to obtain confidence sets for ΘI and points inside it. For models with finitely many moment inequalities, we show that our Wald-type statistic is asymptotically equivalent to CHT’s statistic under regularity conditions.</description><subject>Asymptotic methods</subject><subject>Criterion function</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Partial identification</subject><subject>Set theory</subject><subject>Studies</subject><subject>Support function</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BCHguTWTx6Y9ybL4ggUveg5pMsWUblPTrrDf3pbu3dMc5v-Y-RFyDywHBpvHJm_QxS4ecs5A5cBzBvqCrKDQPNsUpbokKyaYzCTTm2tyMwwNY0zJQqzI25b6o22p7fsUrfumY6ShqzFh55DWMdHepjHYtj3R4LEbQx3Q06UPxxQcPUSP7XBLrmrbDnh3nmvy9fL8uXvL9h-v77vtPnOSwZgpjoKDtY6hl1xUttLSCwuVE4Wdl6IErVTJlHKyUq7kGrRX3NZVrUqBYk0eltzp3p8jDqNp4jF1U6UBrRnTICVMKrWoXIrDkLA2fQoHm04GmJmhmcacoZkZmgFuJmiT72nxTR_hb8BkBhdmFD4kdKPxMfyT8Adi93f3</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Kaido, Hiroaki</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20160501</creationdate><title>A dual approach to inference for partially identified econometric models</title><author>Kaido, Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-52e321aac0ed423bab74d3a1bc38a52e33917559055c4b5c92717d52afbf593e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic methods</topic><topic>Criterion function</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Partial identification</topic><topic>Set theory</topic><topic>Studies</topic><topic>Support function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaido, Hiroaki</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaido, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dual approach to inference for partially identified econometric models</atitle><jtitle>Journal of econometrics</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>192</volume><issue>1</issue><spage>269</spage><epage>290</epage><pages>269-290</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper considers inference for the set ΘI of parameter values that minimize a criterion function. Chernozhukov et al. (2007) (CHT) develop a general theory of estimation and inference using the level-set of a criterion function. We establish a dual relationship between the level-set estimator and its support function and show that the properly normalized support function provides alternative Wald-type inference methods. These methods can be used to obtain confidence sets for ΘI and points inside it. For models with finitely many moment inequalities, we show that our Wald-type statistic is asymptotically equivalent to CHT’s statistic under regularity conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2015.12.017</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2016-05, Vol.192 (1), p.269-290
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_1770071441
source Access via ScienceDirect (Elsevier)
subjects Asymptotic methods
Criterion function
Econometrics
Estimating techniques
Mathematical functions
Mathematical models
Partial identification
Set theory
Studies
Support function
title A dual approach to inference for partially identified econometric models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dual%20approach%20to%20inference%20for%20partially%20identified%20econometric%20models&rft.jtitle=Journal%20of%20econometrics&rft.au=Kaido,%20Hiroaki&rft.date=2016-05-01&rft.volume=192&rft.issue=1&rft.spage=269&rft.epage=290&rft.pages=269-290&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2015.12.017&rft_dat=%3Cproquest_cross%3E3970101241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770071441&rft_id=info:pmid/&rft_els_id=S0304407615003164&rfr_iscdi=true