An Evolving Neuro-Fuzzy System with Online Learning/Self-learning
A new neuro-fuzzy system's architecture and a learning method that adjusts its weights as well as automatically determines a number of neurons, centers' location of membership functions and the receptive field's parameters in an online mode with high processing speed is proposed in th...
Gespeichert in:
Veröffentlicht in: | International journal of modern education and computer science 2015-02, Vol.7 (2), p.1-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | International journal of modern education and computer science |
container_volume | 7 |
creator | Bodyanskiy, Yevgeniy V Tyshchenko, Oleksii K Deineko, Anastasiia O |
description | A new neuro-fuzzy system's architecture and a learning method that adjusts its weights as well as automatically determines a number of neurons, centers' location of membership functions and the receptive field's parameters in an online mode with high processing speed is proposed in this paper. The basic idea of this approach is to tune both synaptic weights and membership functions with the help of the supervised learning and self-learning paradigms. The approach to solving the problem has to do with evolving online neuro-fuzzy systems that can process data under uncertainty conditions. The results proves the effectiveness of the developed architecture and the learning procedure. |
doi_str_mv | 10.5815/ijmecs.2015.02.01 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1770053707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3969949291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1131-f8eafa5c308c4ccf23a9d30e1aea1fef72d7a266e29bfa02ae3b498064877db13</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsNQ-gLeA56Qzu0k2OZbSqhDsoQrelu12VhPSpO42lfTpTWlxLjMDH_8PH2OPCFGSYTItqx0ZH3HAJAIeAd6wEQeZhIDy8_b_TvGeTbyvYJg0jznkIzabNcHi2NbHsvkK3qhzbbjsTqc-WPf-QLvgtzx8B6umLhsKCtKuGbjpmmob1tfvgd1ZXXuaXPeYfSwX7_OXsFg9v85nRWgQBYY2I211YgRkJjbGcqHzrQBCTRotWcm3UvM0JZ5vrAauSWziPIM0zqTcblCM2dMld-_an478QVVt55qhUqGUAImQIAcKL5RxrfeOrNq7cqddrxDUWZa6yFJnWQq4AhR_6xNePQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770053707</pqid></control><display><type>article</type><title>An Evolving Neuro-Fuzzy System with Online Learning/Self-learning</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bodyanskiy, Yevgeniy V ; Tyshchenko, Oleksii K ; Deineko, Anastasiia O</creator><creatorcontrib>Bodyanskiy, Yevgeniy V ; Tyshchenko, Oleksii K ; Deineko, Anastasiia O ; Kharkiv National University of Radio Electronics, Kharkiv, Ukraine</creatorcontrib><description>A new neuro-fuzzy system's architecture and a learning method that adjusts its weights as well as automatically determines a number of neurons, centers' location of membership functions and the receptive field's parameters in an online mode with high processing speed is proposed in this paper. The basic idea of this approach is to tune both synaptic weights and membership functions with the help of the supervised learning and self-learning paradigms. The approach to solving the problem has to do with evolving online neuro-fuzzy systems that can process data under uncertainty conditions. The results proves the effectiveness of the developed architecture and the learning procedure.</description><identifier>ISSN: 2075-0161</identifier><identifier>EISSN: 2075-017X</identifier><identifier>DOI: 10.5815/ijmecs.2015.02.01</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><subject>Algorithms ; Architecture ; Artificial intelligence ; Computer architecture ; Computer Science ; Educational Technology ; Electronic Learning ; Fuzzy logic ; Learning Processes ; Mathematics ; Networks ; Online instruction ; Processing speed</subject><ispartof>International journal of modern education and computer science, 2015-02, Vol.7 (2), p.1-7</ispartof><rights>Copyright Modern Education and Computer Science Press Feb 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bodyanskiy, Yevgeniy V</creatorcontrib><creatorcontrib>Tyshchenko, Oleksii K</creatorcontrib><creatorcontrib>Deineko, Anastasiia O</creatorcontrib><creatorcontrib>Kharkiv National University of Radio Electronics, Kharkiv, Ukraine</creatorcontrib><title>An Evolving Neuro-Fuzzy System with Online Learning/Self-learning</title><title>International journal of modern education and computer science</title><description>A new neuro-fuzzy system's architecture and a learning method that adjusts its weights as well as automatically determines a number of neurons, centers' location of membership functions and the receptive field's parameters in an online mode with high processing speed is proposed in this paper. The basic idea of this approach is to tune both synaptic weights and membership functions with the help of the supervised learning and self-learning paradigms. The approach to solving the problem has to do with evolving online neuro-fuzzy systems that can process data under uncertainty conditions. The results proves the effectiveness of the developed architecture and the learning procedure.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Educational Technology</subject><subject>Electronic Learning</subject><subject>Fuzzy logic</subject><subject>Learning Processes</subject><subject>Mathematics</subject><subject>Networks</subject><subject>Online instruction</subject><subject>Processing speed</subject><issn>2075-0161</issn><issn>2075-017X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kMFKw0AQhhdRsNQ-gLeA56Qzu0k2OZbSqhDsoQrelu12VhPSpO42lfTpTWlxLjMDH_8PH2OPCFGSYTItqx0ZH3HAJAIeAd6wEQeZhIDy8_b_TvGeTbyvYJg0jznkIzabNcHi2NbHsvkK3qhzbbjsTqc-WPf-QLvgtzx8B6umLhsKCtKuGbjpmmob1tfvgd1ZXXuaXPeYfSwX7_OXsFg9v85nRWgQBYY2I211YgRkJjbGcqHzrQBCTRotWcm3UvM0JZ5vrAauSWziPIM0zqTcblCM2dMld-_an478QVVt55qhUqGUAImQIAcKL5RxrfeOrNq7cqddrxDUWZa6yFJnWQq4AhR_6xNePQ</recordid><startdate>20150208</startdate><enddate>20150208</enddate><creator>Bodyanskiy, Yevgeniy V</creator><creator>Tyshchenko, Oleksii K</creator><creator>Deineko, Anastasiia O</creator><general>Modern Education and Computer Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M0P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20150208</creationdate><title>An Evolving Neuro-Fuzzy System with Online Learning/Self-learning</title><author>Bodyanskiy, Yevgeniy V ; Tyshchenko, Oleksii K ; Deineko, Anastasiia O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1131-f8eafa5c308c4ccf23a9d30e1aea1fef72d7a266e29bfa02ae3b498064877db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Educational Technology</topic><topic>Electronic Learning</topic><topic>Fuzzy logic</topic><topic>Learning Processes</topic><topic>Mathematics</topic><topic>Networks</topic><topic>Online instruction</topic><topic>Processing speed</topic><toplevel>online_resources</toplevel><creatorcontrib>Bodyanskiy, Yevgeniy V</creatorcontrib><creatorcontrib>Tyshchenko, Oleksii K</creatorcontrib><creatorcontrib>Deineko, Anastasiia O</creatorcontrib><creatorcontrib>Kharkiv National University of Radio Electronics, Kharkiv, Ukraine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Education Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of modern education and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodyanskiy, Yevgeniy V</au><au>Tyshchenko, Oleksii K</au><au>Deineko, Anastasiia O</au><aucorp>Kharkiv National University of Radio Electronics, Kharkiv, Ukraine</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Evolving Neuro-Fuzzy System with Online Learning/Self-learning</atitle><jtitle>International journal of modern education and computer science</jtitle><date>2015-02-08</date><risdate>2015</risdate><volume>7</volume><issue>2</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2075-0161</issn><eissn>2075-017X</eissn><abstract>A new neuro-fuzzy system's architecture and a learning method that adjusts its weights as well as automatically determines a number of neurons, centers' location of membership functions and the receptive field's parameters in an online mode with high processing speed is proposed in this paper. The basic idea of this approach is to tune both synaptic weights and membership functions with the help of the supervised learning and self-learning paradigms. The approach to solving the problem has to do with evolving online neuro-fuzzy systems that can process data under uncertainty conditions. The results proves the effectiveness of the developed architecture and the learning procedure.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><doi>10.5815/ijmecs.2015.02.01</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-0161 |
ispartof | International journal of modern education and computer science, 2015-02, Vol.7 (2), p.1-7 |
issn | 2075-0161 2075-017X |
language | eng |
recordid | cdi_proquest_journals_1770053707 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Architecture Artificial intelligence Computer architecture Computer Science Educational Technology Electronic Learning Fuzzy logic Learning Processes Mathematics Networks Online instruction Processing speed |
title | An Evolving Neuro-Fuzzy System with Online Learning/Self-learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Evolving%20Neuro-Fuzzy%20System%20with%20Online%20Learning/Self-learning&rft.jtitle=International%20journal%20of%20modern%20education%20and%20computer%20science&rft.au=Bodyanskiy,%20Yevgeniy%20V&rft.aucorp=Kharkiv%20National%20University%20of%20Radio%20Electronics,%20Kharkiv,%20Ukraine&rft.date=2015-02-08&rft.volume=7&rft.issue=2&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2075-0161&rft.eissn=2075-017X&rft_id=info:doi/10.5815/ijmecs.2015.02.01&rft_dat=%3Cproquest_cross%3E3969949291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770053707&rft_id=info:pmid/&rfr_iscdi=true |