Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst

Background N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required. Results A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2013-12, Vol.88 (12), p.2233-2238
Hauptverfasser: Inger, Marek, Wilk, Marcin, Parres-Esclapez, Sonia, Illán-Gómez, Maria José, Salinas-Martínez de Lecea, Concepción, Bueno-López, Agustín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2238
container_issue 12
container_start_page 2233
container_title Journal of chemical technology and biotechnology (1986)
container_volume 88
creator Inger, Marek
Wilk, Marcin
Parres-Esclapez, Sonia
Illán-Gómez, Maria José
Salinas-Martínez de Lecea, Concepción
Bueno-López, Agustín
description Background N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required. Results A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state. Conclusion An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry
doi_str_mv 10.1002/jctb.4092
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1766835185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958224491</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1732-f446c3af5e3b1a66fa0e6cf473bc510d82547d6feb73a2ff13adf05fff9c655b3</originalsourceid><addsrcrecordid>eNo9kFuP2jAQha1qVyp7edh_YKnqY8CX2E4e26iFVivoZS-P1sSxwTQkrG0E_PsGseJpRjrfmTk6CD1QMqaEsMnapHqck5J9QCNKSpXlUpIrNCJMFhkTSnxENzGuCSGyYHKE2rlPod9F3B98Y3FjTb_Z9tEn33fYdxhwsNDibqC8wWB8g7ctdAkvIeKYBnGD9z6tBvDPanGYVJaMy19hSLNgE2h3G98BNpCgPcZ0h64dtNHev89b9Pz921M1yx4X0x_Vl8dsSRVnmctzaTg4YXlNQUoHxErjcsVrIyhpCiZy1Uhna8WBOUc5NI4I51xppBA1v0Wfzne3oX_b2Zj0ut-FbnipqZKy4IIWYqA-v1MQDbQuQGd81NvgNxCOmqlSsKLIB25y5va-tceLTok-Na5PjetT4_pn9fT1tAyO7OzwMdnDxQHhn5aKK6Ff51NdEfpX_X551TP-H-JwhLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766835185</pqid></control><display><type>article</type><title>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</title><source>Wiley Online Library All Journals</source><creator>Inger, Marek ; Wilk, Marcin ; Parres-Esclapez, Sonia ; Illán-Gómez, Maria José ; Salinas-Martínez de Lecea, Concepción ; Bueno-López, Agustín</creator><creatorcontrib>Inger, Marek ; Wilk, Marcin ; Parres-Esclapez, Sonia ; Illán-Gómez, Maria José ; Salinas-Martínez de Lecea, Concepción ; Bueno-López, Agustín</creatorcontrib><description>Background N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required. Results A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state. Conclusion An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4092</identifier><identifier>CODEN: JCTBDC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; Catalysis ; Catalytic reactions ; Ce-Pr mixed oxide ; Chemical engineering ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; greenhouse gas ; N2O decomposition ; nitric acid plant ; Reactors ; Rh catalyst ; Sintering, pelletization, granulation ; Solid-solid systems ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2013-12, Vol.88 (12), p.2233-2238</ispartof><rights>2013 Society of Chemical Industry</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.4092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.4092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27952884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Inger, Marek</creatorcontrib><creatorcontrib>Wilk, Marcin</creatorcontrib><creatorcontrib>Parres-Esclapez, Sonia</creatorcontrib><creatorcontrib>Illán-Gómez, Maria José</creatorcontrib><creatorcontrib>Salinas-Martínez de Lecea, Concepción</creatorcontrib><creatorcontrib>Bueno-López, Agustín</creatorcontrib><title>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>Background N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required. Results A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state. Conclusion An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Ce-Pr mixed oxide</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>greenhouse gas</subject><subject>N2O decomposition</subject><subject>nitric acid plant</subject><subject>Reactors</subject><subject>Rh catalyst</subject><subject>Sintering, pelletization, granulation</subject><subject>Solid-solid systems</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kFuP2jAQha1qVyp7edh_YKnqY8CX2E4e26iFVivoZS-P1sSxwTQkrG0E_PsGseJpRjrfmTk6CD1QMqaEsMnapHqck5J9QCNKSpXlUpIrNCJMFhkTSnxENzGuCSGyYHKE2rlPod9F3B98Y3FjTb_Z9tEn33fYdxhwsNDibqC8wWB8g7ctdAkvIeKYBnGD9z6tBvDPanGYVJaMy19hSLNgE2h3G98BNpCgPcZ0h64dtNHev89b9Pz921M1yx4X0x_Vl8dsSRVnmctzaTg4YXlNQUoHxErjcsVrIyhpCiZy1Uhna8WBOUc5NI4I51xppBA1v0Wfzne3oX_b2Zj0ut-FbnipqZKy4IIWYqA-v1MQDbQuQGd81NvgNxCOmqlSsKLIB25y5va-tceLTok-Na5PjetT4_pn9fT1tAyO7OzwMdnDxQHhn5aKK6Ff51NdEfpX_X551TP-H-JwhLw</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Inger, Marek</creator><creator>Wilk, Marcin</creator><creator>Parres-Esclapez, Sonia</creator><creator>Illán-Gómez, Maria José</creator><creator>Salinas-Martínez de Lecea, Concepción</creator><creator>Bueno-López, Agustín</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201312</creationdate><title>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</title><author>Inger, Marek ; Wilk, Marcin ; Parres-Esclapez, Sonia ; Illán-Gómez, Maria José ; Salinas-Martínez de Lecea, Concepción ; Bueno-López, Agustín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1732-f446c3af5e3b1a66fa0e6cf473bc510d82547d6feb73a2ff13adf05fff9c655b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Ce-Pr mixed oxide</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>greenhouse gas</topic><topic>N2O decomposition</topic><topic>nitric acid plant</topic><topic>Reactors</topic><topic>Rh catalyst</topic><topic>Sintering, pelletization, granulation</topic><topic>Solid-solid systems</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inger, Marek</creatorcontrib><creatorcontrib>Wilk, Marcin</creatorcontrib><creatorcontrib>Parres-Esclapez, Sonia</creatorcontrib><creatorcontrib>Illán-Gómez, Maria José</creatorcontrib><creatorcontrib>Salinas-Martínez de Lecea, Concepción</creatorcontrib><creatorcontrib>Bueno-López, Agustín</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inger, Marek</au><au>Wilk, Marcin</au><au>Parres-Esclapez, Sonia</au><au>Illán-Gómez, Maria José</au><au>Salinas-Martínez de Lecea, Concepción</au><au>Bueno-López, Agustín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2013-12</date><risdate>2013</risdate><volume>88</volume><issue>12</issue><spage>2233</spage><epage>2238</epage><pages>2233-2238</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><coden>JCTBDC</coden><abstract>Background N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required. Results A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state. Conclusion An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.4092</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2013-12, Vol.88 (12), p.2233-2238
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_1766835185
source Wiley Online Library All Journals
subjects Applied sciences
Catalysis
Catalytic reactions
Ce-Pr mixed oxide
Chemical engineering
Chemistry
Exact sciences and technology
General and physical chemistry
greenhouse gas
N2O decomposition
nitric acid plant
Reactors
Rh catalyst
Sintering, pelletization, granulation
Solid-solid systems
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrous%20oxide%20decomposition%20in%20a%20real%20nitric%20acid%20plant%20gas%20stream%20with%20a%20RhOx/Ce0.9Pr0.1O2/alumina%20catalyst&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Inger,%20Marek&rft.date=2013-12&rft.volume=88&rft.issue=12&rft.spage=2233&rft.epage=2238&rft.pages=2233-2238&rft.issn=0268-2575&rft.eissn=1097-4660&rft.coden=JCTBDC&rft_id=info:doi/10.1002/jctb.4092&rft_dat=%3Cproquest_pasca%3E3958224491%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766835185&rft_id=info:pmid/&rfr_iscdi=true