Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst
Background N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required. Results A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to ac...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2013-12, Vol.88 (12), p.2233-2238 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2238 |
---|---|
container_issue | 12 |
container_start_page | 2233 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 88 |
creator | Inger, Marek Wilk, Marcin Parres-Esclapez, Sonia Illán-Gómez, Maria José Salinas-Martínez de Lecea, Concepción Bueno-López, Agustín |
description | Background
N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required.
Results
A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state.
Conclusion
An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.4092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1766835185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958224491</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1732-f446c3af5e3b1a66fa0e6cf473bc510d82547d6feb73a2ff13adf05fff9c655b3</originalsourceid><addsrcrecordid>eNo9kFuP2jAQha1qVyp7edh_YKnqY8CX2E4e26iFVivoZS-P1sSxwTQkrG0E_PsGseJpRjrfmTk6CD1QMqaEsMnapHqck5J9QCNKSpXlUpIrNCJMFhkTSnxENzGuCSGyYHKE2rlPod9F3B98Y3FjTb_Z9tEn33fYdxhwsNDibqC8wWB8g7ctdAkvIeKYBnGD9z6tBvDPanGYVJaMy19hSLNgE2h3G98BNpCgPcZ0h64dtNHev89b9Pz921M1yx4X0x_Vl8dsSRVnmctzaTg4YXlNQUoHxErjcsVrIyhpCiZy1Uhna8WBOUc5NI4I51xppBA1v0Wfzne3oX_b2Zj0ut-FbnipqZKy4IIWYqA-v1MQDbQuQGd81NvgNxCOmqlSsKLIB25y5va-tceLTok-Na5PjetT4_pn9fT1tAyO7OzwMdnDxQHhn5aKK6Ff51NdEfpX_X551TP-H-JwhLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766835185</pqid></control><display><type>article</type><title>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</title><source>Wiley Online Library All Journals</source><creator>Inger, Marek ; Wilk, Marcin ; Parres-Esclapez, Sonia ; Illán-Gómez, Maria José ; Salinas-Martínez de Lecea, Concepción ; Bueno-López, Agustín</creator><creatorcontrib>Inger, Marek ; Wilk, Marcin ; Parres-Esclapez, Sonia ; Illán-Gómez, Maria José ; Salinas-Martínez de Lecea, Concepción ; Bueno-López, Agustín</creatorcontrib><description>Background
N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required.
Results
A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state.
Conclusion
An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4092</identifier><identifier>CODEN: JCTBDC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; Catalysis ; Catalytic reactions ; Ce-Pr mixed oxide ; Chemical engineering ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; greenhouse gas ; N2O decomposition ; nitric acid plant ; Reactors ; Rh catalyst ; Sintering, pelletization, granulation ; Solid-solid systems ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2013-12, Vol.88 (12), p.2233-2238</ispartof><rights>2013 Society of Chemical Industry</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.4092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.4092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27952884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Inger, Marek</creatorcontrib><creatorcontrib>Wilk, Marcin</creatorcontrib><creatorcontrib>Parres-Esclapez, Sonia</creatorcontrib><creatorcontrib>Illán-Gómez, Maria José</creatorcontrib><creatorcontrib>Salinas-Martínez de Lecea, Concepción</creatorcontrib><creatorcontrib>Bueno-López, Agustín</creatorcontrib><title>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>Background
N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required.
Results
A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state.
Conclusion
An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Ce-Pr mixed oxide</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>greenhouse gas</subject><subject>N2O decomposition</subject><subject>nitric acid plant</subject><subject>Reactors</subject><subject>Rh catalyst</subject><subject>Sintering, pelletization, granulation</subject><subject>Solid-solid systems</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kFuP2jAQha1qVyp7edh_YKnqY8CX2E4e26iFVivoZS-P1sSxwTQkrG0E_PsGseJpRjrfmTk6CD1QMqaEsMnapHqck5J9QCNKSpXlUpIrNCJMFhkTSnxENzGuCSGyYHKE2rlPod9F3B98Y3FjTb_Z9tEn33fYdxhwsNDibqC8wWB8g7ctdAkvIeKYBnGD9z6tBvDPanGYVJaMy19hSLNgE2h3G98BNpCgPcZ0h64dtNHev89b9Pz921M1yx4X0x_Vl8dsSRVnmctzaTg4YXlNQUoHxErjcsVrIyhpCiZy1Uhna8WBOUc5NI4I51xppBA1v0Wfzne3oX_b2Zj0ut-FbnipqZKy4IIWYqA-v1MQDbQuQGd81NvgNxCOmqlSsKLIB25y5va-tceLTok-Na5PjetT4_pn9fT1tAyO7OzwMdnDxQHhn5aKK6Ff51NdEfpX_X551TP-H-JwhLw</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Inger, Marek</creator><creator>Wilk, Marcin</creator><creator>Parres-Esclapez, Sonia</creator><creator>Illán-Gómez, Maria José</creator><creator>Salinas-Martínez de Lecea, Concepción</creator><creator>Bueno-López, Agustín</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201312</creationdate><title>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</title><author>Inger, Marek ; Wilk, Marcin ; Parres-Esclapez, Sonia ; Illán-Gómez, Maria José ; Salinas-Martínez de Lecea, Concepción ; Bueno-López, Agustín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1732-f446c3af5e3b1a66fa0e6cf473bc510d82547d6feb73a2ff13adf05fff9c655b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Ce-Pr mixed oxide</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>greenhouse gas</topic><topic>N2O decomposition</topic><topic>nitric acid plant</topic><topic>Reactors</topic><topic>Rh catalyst</topic><topic>Sintering, pelletization, granulation</topic><topic>Solid-solid systems</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inger, Marek</creatorcontrib><creatorcontrib>Wilk, Marcin</creatorcontrib><creatorcontrib>Parres-Esclapez, Sonia</creatorcontrib><creatorcontrib>Illán-Gómez, Maria José</creatorcontrib><creatorcontrib>Salinas-Martínez de Lecea, Concepción</creatorcontrib><creatorcontrib>Bueno-López, Agustín</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inger, Marek</au><au>Wilk, Marcin</au><au>Parres-Esclapez, Sonia</au><au>Illán-Gómez, Maria José</au><au>Salinas-Martínez de Lecea, Concepción</au><au>Bueno-López, Agustín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2013-12</date><risdate>2013</risdate><volume>88</volume><issue>12</issue><spage>2233</spage><epage>2238</epage><pages>2233-2238</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><coden>JCTBDC</coden><abstract>Background
N2O is a powerful greenhouse gas emitted in nitric acid plants, and emission control technologies are required.
Results
A 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 catalyst has been prepared and tested for N2O decomposition in a real nitric acid plant gas stream. The catalyst is active enough to achieve 100% N2O removal, maintaining a constant catalytic activity after 40 h operation without deactivating. Characterization of the fresh and used catalyst, using different techniques, revealed no changes during the N2O decomposition experiments: (i) XRD and Raman spectroscopy show the fluorite structure of the Ce–Pr mixed oxide before and after the catalytic tests, (ii) the crystal size of the Ce–Pr mixed oxide particles and the BET surface area of the catalyst is maintained, evidencing no sintering of ceria particles, (iii) H2‐TPR indicates that the reducibility of the catalyst is similar before and after the catalytic tests, revealing chemical stability, and (iv) TEM and XPS analysis indicated the high stability of the rhodium particle size and oxidation state.
Conclusion
An active and stable catalyst with formulation 0.25%Rh/50%Ce0.9Pr0.1O2/γ‐Al2O3 has been prepared and successfully tested for N2O decomposition in a real nitric acid plant gas stream. © 2013 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.4092</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2013-12, Vol.88 (12), p.2233-2238 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_1766835185 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Catalysis Catalytic reactions Ce-Pr mixed oxide Chemical engineering Chemistry Exact sciences and technology General and physical chemistry greenhouse gas N2O decomposition nitric acid plant Reactors Rh catalyst Sintering, pelletization, granulation Solid-solid systems Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrous%20oxide%20decomposition%20in%20a%20real%20nitric%20acid%20plant%20gas%20stream%20with%20a%20RhOx/Ce0.9Pr0.1O2/alumina%20catalyst&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Inger,%20Marek&rft.date=2013-12&rft.volume=88&rft.issue=12&rft.spage=2233&rft.epage=2238&rft.pages=2233-2238&rft.issn=0268-2575&rft.eissn=1097-4660&rft.coden=JCTBDC&rft_id=info:doi/10.1002/jctb.4092&rft_dat=%3Cproquest_pasca%3E3958224491%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766835185&rft_id=info:pmid/&rfr_iscdi=true |