A tensor-based big data model for QoS improvement in software defined networks

The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2016-01, Vol.30 (1), p.30-35
Hauptverfasser: Liwei Kuang, Yang, Laurence T., Xiaokang Wang, Puming Wang, Yaliang Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 30
container_title IEEE network
container_volume 30
creator Liwei Kuang
Yang, Laurence T.
Xiaokang Wang
Puming Wang
Yaliang Zhao
description The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article.
doi_str_mv 10.1109/MNET.2016.7389828
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1766275164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7389828</ieee_id><sourcerecordid>3957227401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKs_QNwE3LiZmmSSTGZZSv2AqogV3IVM5kWmdiY1mVr896a0unD1Fu_cy-UgdE7JiFJSXj88TucjRqgcFbkqFVMHaECFUBkV8u0QDYgqSaYI58foJMYFIZSLnA3Q4xj30EUfsspEqHHVvOPa9Aa3voYldj7gZ_-Cm3YV_Be00PW46XD0rt-YALgG13Qp1kG_8eEjnqIjZ5YRzvZ3iF5vpvPJXTZ7ur2fjGeZzZnsMyedMZYxmtbVhSQ15cbWJRGiskZyC1KVXFonnFS8UJUjTIoCRGmBCcvzfIiudr1p1ucaYq_bJlpYLk0Hfh01LcqcqULmJKGX_9CFX4curUuUlKwQVPJE0R1lg48xgNOr0LQmfGtK9Naw3hrWW8N6bzhlLnaZBgD--N_vD2hddpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766275164</pqid></control><display><type>article</type><title>A tensor-based big data model for QoS improvement in software defined networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liwei Kuang ; Yang, Laurence T. ; Xiaokang Wang ; Puming Wang ; Yaliang Zhao</creator><creatorcontrib>Liwei Kuang ; Yang, Laurence T. ; Xiaokang Wang ; Puming Wang ; Yaliang Zhao</creatorcontrib><description>The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2016.7389828</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Computer networks ; Data models ; IP networks ; Mathematical analysis ; Mathematical models ; Networks ; Predictive models ; Quality of service ; Quality of service architectures ; Routing ; Software ; Software defined networks ; Tensors ; Traffic engineering ; Traffic flow</subject><ispartof>IEEE network, 2016-01, Vol.30 (1), p.30-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan-Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</citedby><cites>FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7389828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7389828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liwei Kuang</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Xiaokang Wang</creatorcontrib><creatorcontrib>Puming Wang</creatorcontrib><creatorcontrib>Yaliang Zhao</creatorcontrib><title>A tensor-based big data model for QoS improvement in software defined networks</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article.</description><subject>Big Data</subject><subject>Computer networks</subject><subject>Data models</subject><subject>IP networks</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Predictive models</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Routing</subject><subject>Software</subject><subject>Software defined networks</subject><subject>Tensors</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURYMoWKs_QNwE3LiZmmSSTGZZSv2AqogV3IVM5kWmdiY1mVr896a0unD1Fu_cy-UgdE7JiFJSXj88TucjRqgcFbkqFVMHaECFUBkV8u0QDYgqSaYI58foJMYFIZSLnA3Q4xj30EUfsspEqHHVvOPa9Aa3voYldj7gZ_-Cm3YV_Be00PW46XD0rt-YALgG13Qp1kG_8eEjnqIjZ5YRzvZ3iF5vpvPJXTZ7ur2fjGeZzZnsMyedMZYxmtbVhSQ15cbWJRGiskZyC1KVXFonnFS8UJUjTIoCRGmBCcvzfIiudr1p1ucaYq_bJlpYLk0Hfh01LcqcqULmJKGX_9CFX4curUuUlKwQVPJE0R1lg48xgNOr0LQmfGtK9Naw3hrWW8N6bzhlLnaZBgD--N_vD2hddpc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Liwei Kuang</creator><creator>Yang, Laurence T.</creator><creator>Xiaokang Wang</creator><creator>Puming Wang</creator><creator>Yaliang Zhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201601</creationdate><title>A tensor-based big data model for QoS improvement in software defined networks</title><author>Liwei Kuang ; Yang, Laurence T. ; Xiaokang Wang ; Puming Wang ; Yaliang Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Big Data</topic><topic>Computer networks</topic><topic>Data models</topic><topic>IP networks</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Predictive models</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Routing</topic><topic>Software</topic><topic>Software defined networks</topic><topic>Tensors</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liwei Kuang</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Xiaokang Wang</creatorcontrib><creatorcontrib>Puming Wang</creatorcontrib><creatorcontrib>Yaliang Zhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liwei Kuang</au><au>Yang, Laurence T.</au><au>Xiaokang Wang</au><au>Puming Wang</au><au>Yaliang Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tensor-based big data model for QoS improvement in software defined networks</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2016-01</date><risdate>2016</risdate><volume>30</volume><issue>1</issue><spage>30</spage><epage>35</epage><pages>30-35</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.2016.7389828</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2016-01, Vol.30 (1), p.30-35
issn 0890-8044
1558-156X
language eng
recordid cdi_proquest_journals_1766275164
source IEEE Electronic Library (IEL)
subjects Big Data
Computer networks
Data models
IP networks
Mathematical analysis
Mathematical models
Networks
Predictive models
Quality of service
Quality of service architectures
Routing
Software
Software defined networks
Tensors
Traffic engineering
Traffic flow
title A tensor-based big data model for QoS improvement in software defined networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tensor-based%20big%20data%20model%20for%20QoS%20improvement%20in%20software%20defined%20networks&rft.jtitle=IEEE%20network&rft.au=Liwei%20Kuang&rft.date=2016-01&rft.volume=30&rft.issue=1&rft.spage=30&rft.epage=35&rft.pages=30-35&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2016.7389828&rft_dat=%3Cproquest_RIE%3E3957227401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766275164&rft_id=info:pmid/&rft_ieee_id=7389828&rfr_iscdi=true