A tensor-based big data model for QoS improvement in software defined networks
The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a...
Gespeichert in:
Veröffentlicht in: | IEEE network 2016-01, Vol.30 (1), p.30-35 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | IEEE network |
container_volume | 30 |
creator | Liwei Kuang Yang, Laurence T. Xiaokang Wang Puming Wang Yaliang Zhao |
description | The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article. |
doi_str_mv | 10.1109/MNET.2016.7389828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1766275164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7389828</ieee_id><sourcerecordid>3957227401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKs_QNwE3LiZmmSSTGZZSv2AqogV3IVM5kWmdiY1mVr896a0unD1Fu_cy-UgdE7JiFJSXj88TucjRqgcFbkqFVMHaECFUBkV8u0QDYgqSaYI58foJMYFIZSLnA3Q4xj30EUfsspEqHHVvOPa9Aa3voYldj7gZ_-Cm3YV_Be00PW46XD0rt-YALgG13Qp1kG_8eEjnqIjZ5YRzvZ3iF5vpvPJXTZ7ur2fjGeZzZnsMyedMZYxmtbVhSQ15cbWJRGiskZyC1KVXFonnFS8UJUjTIoCRGmBCcvzfIiudr1p1ucaYq_bJlpYLk0Hfh01LcqcqULmJKGX_9CFX4curUuUlKwQVPJE0R1lg48xgNOr0LQmfGtK9Naw3hrWW8N6bzhlLnaZBgD--N_vD2hddpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766275164</pqid></control><display><type>article</type><title>A tensor-based big data model for QoS improvement in software defined networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liwei Kuang ; Yang, Laurence T. ; Xiaokang Wang ; Puming Wang ; Yaliang Zhao</creator><creatorcontrib>Liwei Kuang ; Yang, Laurence T. ; Xiaokang Wang ; Puming Wang ; Yaliang Zhao</creatorcontrib><description>The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2016.7389828</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Computer networks ; Data models ; IP networks ; Mathematical analysis ; Mathematical models ; Networks ; Predictive models ; Quality of service ; Quality of service architectures ; Routing ; Software ; Software defined networks ; Tensors ; Traffic engineering ; Traffic flow</subject><ispartof>IEEE network, 2016-01, Vol.30 (1), p.30-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan-Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</citedby><cites>FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7389828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7389828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liwei Kuang</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Xiaokang Wang</creatorcontrib><creatorcontrib>Puming Wang</creatorcontrib><creatorcontrib>Yaliang Zhao</creatorcontrib><title>A tensor-based big data model for QoS improvement in software defined networks</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article.</description><subject>Big Data</subject><subject>Computer networks</subject><subject>Data models</subject><subject>IP networks</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Predictive models</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Routing</subject><subject>Software</subject><subject>Software defined networks</subject><subject>Tensors</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURYMoWKs_QNwE3LiZmmSSTGZZSv2AqogV3IVM5kWmdiY1mVr896a0unD1Fu_cy-UgdE7JiFJSXj88TucjRqgcFbkqFVMHaECFUBkV8u0QDYgqSaYI58foJMYFIZSLnA3Q4xj30EUfsspEqHHVvOPa9Aa3voYldj7gZ_-Cm3YV_Be00PW46XD0rt-YALgG13Qp1kG_8eEjnqIjZ5YRzvZ3iF5vpvPJXTZ7ur2fjGeZzZnsMyedMZYxmtbVhSQ15cbWJRGiskZyC1KVXFonnFS8UJUjTIoCRGmBCcvzfIiudr1p1ucaYq_bJlpYLk0Hfh01LcqcqULmJKGX_9CFX4curUuUlKwQVPJE0R1lg48xgNOr0LQmfGtK9Naw3hrWW8N6bzhlLnaZBgD--N_vD2hddpc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Liwei Kuang</creator><creator>Yang, Laurence T.</creator><creator>Xiaokang Wang</creator><creator>Puming Wang</creator><creator>Yaliang Zhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201601</creationdate><title>A tensor-based big data model for QoS improvement in software defined networks</title><author>Liwei Kuang ; Yang, Laurence T. ; Xiaokang Wang ; Puming Wang ; Yaliang Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f6faac221156d760d14acd9055bca64ce68946cf5f68478bf02657e59ce25c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Big Data</topic><topic>Computer networks</topic><topic>Data models</topic><topic>IP networks</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Predictive models</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Routing</topic><topic>Software</topic><topic>Software defined networks</topic><topic>Tensors</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liwei Kuang</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Xiaokang Wang</creatorcontrib><creatorcontrib>Puming Wang</creatorcontrib><creatorcontrib>Yaliang Zhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liwei Kuang</au><au>Yang, Laurence T.</au><au>Xiaokang Wang</au><au>Puming Wang</au><au>Yaliang Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tensor-based big data model for QoS improvement in software defined networks</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2016-01</date><risdate>2016</risdate><volume>30</volume><issue>1</issue><spage>30</spage><epage>35</epage><pages>30-35</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>The growing volume of network traffic and gradual deployment of SDN devices initiate a new era in which one distinguished feature is the application of big data technology to SDNs for construction of flexible, scalable, and self-managing networks. The primary purpose of this article is to develop a novel tensor-based model for efficient provisioning of QoS in software defined networks. First, a forwarding tensor model is proposed to formalize the networking functions in the data plane; then a controlling tensor model is presented for routing path recommendation in the control plane. Finally, the article introduces a transition tensor model for network traffic prediction and QoS provisioning. The three models can automatically monitor the network state, recommend routing paths and predict network traffic, respectively. A case study to recommend routing paths is investigated in the article.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.2016.7389828</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0890-8044 |
ispartof | IEEE network, 2016-01, Vol.30 (1), p.30-35 |
issn | 0890-8044 1558-156X |
language | eng |
recordid | cdi_proquest_journals_1766275164 |
source | IEEE Electronic Library (IEL) |
subjects | Big Data Computer networks Data models IP networks Mathematical analysis Mathematical models Networks Predictive models Quality of service Quality of service architectures Routing Software Software defined networks Tensors Traffic engineering Traffic flow |
title | A tensor-based big data model for QoS improvement in software defined networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tensor-based%20big%20data%20model%20for%20QoS%20improvement%20in%20software%20defined%20networks&rft.jtitle=IEEE%20network&rft.au=Liwei%20Kuang&rft.date=2016-01&rft.volume=30&rft.issue=1&rft.spage=30&rft.epage=35&rft.pages=30-35&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2016.7389828&rft_dat=%3Cproquest_RIE%3E3957227401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766275164&rft_id=info:pmid/&rft_ieee_id=7389828&rfr_iscdi=true |