Inactivation of a G[alpha]s-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis
Genomic alterations in GNAS, the gene coding for the Gαs heterotrimeric G protein, are associated with a large number of human diseases. Here, we explored the role of Gαs on stem cell fate decisions by using the mouse epidermis as a model system. Conditional epidermal deletion of Gnas or repression...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2015-06, Vol.17 (6), p.793 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genomic alterations in GNAS, the gene coding for the Gαs heterotrimeric G protein, are associated with a large number of human diseases. Here, we explored the role of Gαs on stem cell fate decisions by using the mouse epidermis as a model system. Conditional epidermal deletion of Gnas or repression of PKA signalling caused a remarkable expansion of the stem cell compartment, resulting in rapid basal-cell carcinoma formation. In contrast, inducible expression of active Gαs in the epidermis caused hair follicle stem cell exhaustion and hair loss. Mechanistically, we found that Gαs -PKA disruption promotes the cell autonomous Sonic Hedgehog pathway stimulation and Hippo signalling inhibition, resulting in the non-canonical activation of GLI and YAP1. Our study highlights an important tumour suppressive function of Gαs -PKA, limiting the proliferation of epithelial stem cells and maintaining proper hair follicle homeostasis. These findings could have broad implications in multiple pathophysiological conditions, including cancer. |
---|---|
ISSN: | 1465-7392 1476-4679 |
DOI: | 10.1038/ncb3164 |