Parity lifetime of bound states in a proximitized semiconductor nanowire
Bound states in semiconductor–superconductor hybrids are shown to have parity lifetimes of over 10 milliseconds, suggesting that they could provide a platform for topological quantum computing. Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequenc...
Gespeichert in:
Veröffentlicht in: | Nature physics 2015-12, Vol.11 (12), p.1017-1021 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1021 |
---|---|
container_issue | 12 |
container_start_page | 1017 |
container_title | Nature physics |
container_volume | 11 |
creator | Higginbotham, A. P. Albrecht, S. M. Kiršanskas, G. Chang, W. Kuemmeth, F. Krogstrup, P. Jespersen, T. S. Nygård, J. Flensberg, K. Marcus, C. M. |
description | Bound states in semiconductor–superconductor hybrids are shown to have parity lifetimes of over 10 milliseconds, suggesting that they could provide a platform for topological quantum computing.
Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits
1
,
2
,
3
,
4
,
5
,
6
, and braiding errors in proposed Majorana-based topological quantum computers
7
,
8
,
9
. Quasiparticle dynamics have been studied in detail in metallic superconductors
10
,
11
,
12
,
13
,
14
but remain relatively unexplored in semiconductor–superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms. |
doi_str_mv | 10.1038/nphys3461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1766115191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3956577971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-e2b46fda6f07a933ccfd227f164ad9ae01a9faa806a832686ce3a0ea02fc434a3</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgCtbqwX8Q8KSwmq9md49SrBUKetDzMs1ONKWb1CSL1l_vSqUInmZgHmaGl5Bzzq45k9WN37xtk1SaH5ARL9WkEKrih_u-lMfkJKUVY0poLkdk_gTR5S1dO4vZdUiDpcvQ-5amDBkTdZ4C3cTw6TqX3RcOA-ycCb7tTQ6RevDhw0U8JUcW1gnPfuuYvMzunqfzYvF4_zC9XRRGaZkLFEulbQvashJqKY2xrRCl5VpBWwMyDrUFqJiGSgpdaYMSGAIT1iipQI7JxW7v8NN7jyk3q9BHP5xseKk15xNe80Fd7pSJIaWIttlE10HcNpw1P0E1-6AGe7WzaTD-FeOfjf_wN4JCa9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766115191</pqid></control><display><type>article</type><title>Parity lifetime of bound states in a proximitized semiconductor nanowire</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Higginbotham, A. P. ; Albrecht, S. M. ; Kiršanskas, G. ; Chang, W. ; Kuemmeth, F. ; Krogstrup, P. ; Jespersen, T. S. ; Nygård, J. ; Flensberg, K. ; Marcus, C. M.</creator><creatorcontrib>Higginbotham, A. P. ; Albrecht, S. M. ; Kiršanskas, G. ; Chang, W. ; Kuemmeth, F. ; Krogstrup, P. ; Jespersen, T. S. ; Nygård, J. ; Flensberg, K. ; Marcus, C. M.</creatorcontrib><description>Bound states in semiconductor–superconductor hybrids are shown to have parity lifetimes of over 10 milliseconds, suggesting that they could provide a platform for topological quantum computing.
Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits
1
,
2
,
3
,
4
,
5
,
6
, and braiding errors in proposed Majorana-based topological quantum computers
7
,
8
,
9
. Quasiparticle dynamics have been studied in detail in metallic superconductors
10
,
11
,
12
,
13
,
14
but remain relatively unexplored in semiconductor–superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3461</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1016 ; 639/766/119/1003 ; 639/925/927/1064 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; letter ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Nanowires ; Optical and Plasma Physics ; Physics ; Poisoning ; Semiconductors ; Spectroscopy ; Superconductivity ; Theoretical</subject><ispartof>Nature physics, 2015-12, Vol.11 (12), p.1017-1021</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-e2b46fda6f07a933ccfd227f164ad9ae01a9faa806a832686ce3a0ea02fc434a3</citedby><cites>FETCH-LOGICAL-c463t-e2b46fda6f07a933ccfd227f164ad9ae01a9faa806a832686ce3a0ea02fc434a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3461$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3461$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Higginbotham, A. P.</creatorcontrib><creatorcontrib>Albrecht, S. M.</creatorcontrib><creatorcontrib>Kiršanskas, G.</creatorcontrib><creatorcontrib>Chang, W.</creatorcontrib><creatorcontrib>Kuemmeth, F.</creatorcontrib><creatorcontrib>Krogstrup, P.</creatorcontrib><creatorcontrib>Jespersen, T. S.</creatorcontrib><creatorcontrib>Nygård, J.</creatorcontrib><creatorcontrib>Flensberg, K.</creatorcontrib><creatorcontrib>Marcus, C. M.</creatorcontrib><title>Parity lifetime of bound states in a proximitized semiconductor nanowire</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Bound states in semiconductor–superconductor hybrids are shown to have parity lifetimes of over 10 milliseconds, suggesting that they could provide a platform for topological quantum computing.
Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits
1
,
2
,
3
,
4
,
5
,
6
, and braiding errors in proposed Majorana-based topological quantum computers
7
,
8
,
9
. Quasiparticle dynamics have been studied in detail in metallic superconductors
10
,
11
,
12
,
13
,
14
but remain relatively unexplored in semiconductor–superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.</description><subject>639/766/119/1000/1016</subject><subject>639/766/119/1003</subject><subject>639/925/927/1064</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanowires</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Poisoning</subject><subject>Semiconductors</subject><subject>Spectroscopy</subject><subject>Superconductivity</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1LAzEQBuAgCtbqwX8Q8KSwmq9md49SrBUKetDzMs1ONKWb1CSL1l_vSqUInmZgHmaGl5Bzzq45k9WN37xtk1SaH5ARL9WkEKrih_u-lMfkJKUVY0poLkdk_gTR5S1dO4vZdUiDpcvQ-5amDBkTdZ4C3cTw6TqX3RcOA-ycCb7tTQ6RevDhw0U8JUcW1gnPfuuYvMzunqfzYvF4_zC9XRRGaZkLFEulbQvashJqKY2xrRCl5VpBWwMyDrUFqJiGSgpdaYMSGAIT1iipQI7JxW7v8NN7jyk3q9BHP5xseKk15xNe80Fd7pSJIaWIttlE10HcNpw1P0E1-6AGe7WzaTD-FeOfjf_wN4JCa9U</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Higginbotham, A. P.</creator><creator>Albrecht, S. M.</creator><creator>Kiršanskas, G.</creator><creator>Chang, W.</creator><creator>Kuemmeth, F.</creator><creator>Krogstrup, P.</creator><creator>Jespersen, T. S.</creator><creator>Nygård, J.</creator><creator>Flensberg, K.</creator><creator>Marcus, C. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>Parity lifetime of bound states in a proximitized semiconductor nanowire</title><author>Higginbotham, A. P. ; Albrecht, S. M. ; Kiršanskas, G. ; Chang, W. ; Kuemmeth, F. ; Krogstrup, P. ; Jespersen, T. S. ; Nygård, J. ; Flensberg, K. ; Marcus, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-e2b46fda6f07a933ccfd227f164ad9ae01a9faa806a832686ce3a0ea02fc434a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/119/1000/1016</topic><topic>639/766/119/1003</topic><topic>639/925/927/1064</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanowires</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Poisoning</topic><topic>Semiconductors</topic><topic>Spectroscopy</topic><topic>Superconductivity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higginbotham, A. P.</creatorcontrib><creatorcontrib>Albrecht, S. M.</creatorcontrib><creatorcontrib>Kiršanskas, G.</creatorcontrib><creatorcontrib>Chang, W.</creatorcontrib><creatorcontrib>Kuemmeth, F.</creatorcontrib><creatorcontrib>Krogstrup, P.</creatorcontrib><creatorcontrib>Jespersen, T. S.</creatorcontrib><creatorcontrib>Nygård, J.</creatorcontrib><creatorcontrib>Flensberg, K.</creatorcontrib><creatorcontrib>Marcus, C. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higginbotham, A. P.</au><au>Albrecht, S. M.</au><au>Kiršanskas, G.</au><au>Chang, W.</au><au>Kuemmeth, F.</au><au>Krogstrup, P.</au><au>Jespersen, T. S.</au><au>Nygård, J.</au><au>Flensberg, K.</au><au>Marcus, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parity lifetime of bound states in a proximitized semiconductor nanowire</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>1017</spage><epage>1021</epage><pages>1017-1021</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Bound states in semiconductor–superconductor hybrids are shown to have parity lifetimes of over 10 milliseconds, suggesting that they could provide a platform for topological quantum computing.
Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits
1
,
2
,
3
,
4
,
5
,
6
, and braiding errors in proposed Majorana-based topological quantum computers
7
,
8
,
9
. Quasiparticle dynamics have been studied in detail in metallic superconductors
10
,
11
,
12
,
13
,
14
but remain relatively unexplored in semiconductor–superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3461</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2015-12, Vol.11 (12), p.1017-1021 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_1766115191 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/766/119/1000/1016 639/766/119/1003 639/925/927/1064 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics letter Magnetic fields Mathematical and Computational Physics Molecular Nanowires Optical and Plasma Physics Physics Poisoning Semiconductors Spectroscopy Superconductivity Theoretical |
title | Parity lifetime of bound states in a proximitized semiconductor nanowire |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parity%20lifetime%20of%20bound%20states%20in%20a%20proximitized%20semiconductor%20nanowire&rft.jtitle=Nature%20physics&rft.au=Higginbotham,%20A.%C2%A0P.&rft.date=2015-12-01&rft.volume=11&rft.issue=12&rft.spage=1017&rft.epage=1021&rft.pages=1017-1021&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3461&rft_dat=%3Cproquest_cross%3E3956577971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766115191&rft_id=info:pmid/&rfr_iscdi=true |