Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes
The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently,...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2016-03, Vol.158 (3), p.489-499 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 3 |
container_start_page | 489 |
container_title | Boundary-layer meteorology |
container_volume | 158 |
creator | Serrano-Ortiz, P. Sánchez-Cañete, E. P. Olmo, F. J. Metzger, S. Pérez-Priego, O. Carrara, A. Alados-Arboledas, L. Kowalski, A. S. |
description | The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation
(
R
n
)
and soil heat fluxes (
G
) are treated differently, and typically only
R
n
is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal
R
n
and
G
. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal
R
n
, when only vertical
R
n
measurements are available. |
doi_str_mv | 10.1007/s10546-015-0099-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1765329535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443488576</galeid><sourcerecordid>A443488576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</originalsourceid><addsrcrecordid>eNp1kEtLLDEQRoNcwbnqD3DX4DpaSefVy7mDL1AURreGmK4MLT3JmPQs_PdG-i7cSBZFhXNSqY-QMwYXDEBfFgZSKApMUoCuo-KALJjULWVC8z9kAQCKmpaJI_K3lPfaaiZhQV7X-xycR_rkshtHHJs1xpJy85gHjJObhhSbUPtlKVjKEDfNVcS8-Wz-udFFj80qbXcpVrY0FX1I-2oNsVmPaYflhBwGNxY8_V-Pycv11fPqlt4_3tytlvfUCy4nGvruzWtpUMlgEIRXxhunQLeMexWU0W9KMxNED73sA3DQDsED7wTveOjaY3I-v7vL6WOPZbLvaZ9jHWmZVrLlnWxlpS5mauNGtEMMacrO19PjdvB1iTDU-6UQrTBGalUFNgs-p1IyBrvLw9blT8vAfudu59xtzd1-525FdfjslMrGDeYfX_lV-gLPeoUf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765329535</pqid></control><display><type>article</type><title>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Serrano-Ortiz, P. ; Sánchez-Cañete, E. P. ; Olmo, F. J. ; Metzger, S. ; Pérez-Priego, O. ; Carrara, A. ; Alados-Arboledas, L. ; Kowalski, A. S.</creator><creatorcontrib>Serrano-Ortiz, P. ; Sánchez-Cañete, E. P. ; Olmo, F. J. ; Metzger, S. ; Pérez-Priego, O. ; Carrara, A. ; Alados-Arboledas, L. ; Kowalski, A. S.</creatorcontrib><description>The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation
(
R
n
)
and soil heat fluxes (
G
) are treated differently, and typically only
R
n
is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal
R
n
and
G
. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal
R
n
, when only vertical
R
n
measurements are available.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-015-0099-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Earth and Environmental Science ; Earth Sciences ; Energy balance ; Instrumentation ; Latent heat ; Meteorology ; Mountains ; Net radiation ; Notes and Comments ; Sensors ; Soil sciences ; Thermodynamics ; Turbulence</subject><ispartof>Boundary-layer meteorology, 2016-03, Vol.158 (3), p.489-499</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</citedby><cites>FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-015-0099-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-015-0099-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Serrano-Ortiz, P.</creatorcontrib><creatorcontrib>Sánchez-Cañete, E. P.</creatorcontrib><creatorcontrib>Olmo, F. J.</creatorcontrib><creatorcontrib>Metzger, S.</creatorcontrib><creatorcontrib>Pérez-Priego, O.</creatorcontrib><creatorcontrib>Carrara, A.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><creatorcontrib>Kowalski, A. S.</creatorcontrib><title>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation
(
R
n
)
and soil heat fluxes (
G
) are treated differently, and typically only
R
n
is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal
R
n
and
G
. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal
R
n
, when only vertical
R
n
measurements are available.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy balance</subject><subject>Instrumentation</subject><subject>Latent heat</subject><subject>Meteorology</subject><subject>Mountains</subject><subject>Net radiation</subject><subject>Notes and Comments</subject><subject>Sensors</subject><subject>Soil sciences</subject><subject>Thermodynamics</subject><subject>Turbulence</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLLDEQRoNcwbnqD3DX4DpaSefVy7mDL1AURreGmK4MLT3JmPQs_PdG-i7cSBZFhXNSqY-QMwYXDEBfFgZSKApMUoCuo-KALJjULWVC8z9kAQCKmpaJI_K3lPfaaiZhQV7X-xycR_rkshtHHJs1xpJy85gHjJObhhSbUPtlKVjKEDfNVcS8-Wz-udFFj80qbXcpVrY0FX1I-2oNsVmPaYflhBwGNxY8_V-Pycv11fPqlt4_3tytlvfUCy4nGvruzWtpUMlgEIRXxhunQLeMexWU0W9KMxNED73sA3DQDsED7wTveOjaY3I-v7vL6WOPZbLvaZ9jHWmZVrLlnWxlpS5mauNGtEMMacrO19PjdvB1iTDU-6UQrTBGalUFNgs-p1IyBrvLw9blT8vAfudu59xtzd1-525FdfjslMrGDeYfX_lV-gLPeoUf</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Serrano-Ortiz, P.</creator><creator>Sánchez-Cañete, E. P.</creator><creator>Olmo, F. J.</creator><creator>Metzger, S.</creator><creator>Pérez-Priego, O.</creator><creator>Carrara, A.</creator><creator>Alados-Arboledas, L.</creator><creator>Kowalski, A. S.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20160301</creationdate><title>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</title><author>Serrano-Ortiz, P. ; Sánchez-Cañete, E. P. ; Olmo, F. J. ; Metzger, S. ; Pérez-Priego, O. ; Carrara, A. ; Alados-Arboledas, L. ; Kowalski, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy balance</topic><topic>Instrumentation</topic><topic>Latent heat</topic><topic>Meteorology</topic><topic>Mountains</topic><topic>Net radiation</topic><topic>Notes and Comments</topic><topic>Sensors</topic><topic>Soil sciences</topic><topic>Thermodynamics</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serrano-Ortiz, P.</creatorcontrib><creatorcontrib>Sánchez-Cañete, E. P.</creatorcontrib><creatorcontrib>Olmo, F. J.</creatorcontrib><creatorcontrib>Metzger, S.</creatorcontrib><creatorcontrib>Pérez-Priego, O.</creatorcontrib><creatorcontrib>Carrara, A.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><creatorcontrib>Kowalski, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serrano-Ortiz, P.</au><au>Sánchez-Cañete, E. P.</au><au>Olmo, F. J.</au><au>Metzger, S.</au><au>Pérez-Priego, O.</au><au>Carrara, A.</au><au>Alados-Arboledas, L.</au><au>Kowalski, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>158</volume><issue>3</issue><spage>489</spage><epage>499</epage><pages>489-499</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation
(
R
n
)
and soil heat fluxes (
G
) are treated differently, and typically only
R
n
is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal
R
n
and
G
. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal
R
n
, when only vertical
R
n
measurements are available.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-015-0099-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2016-03, Vol.158 (3), p.489-499 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_journals_1765329535 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Earth and Environmental Science Earth Sciences Energy balance Instrumentation Latent heat Meteorology Mountains Net radiation Notes and Comments Sensors Soil sciences Thermodynamics Turbulence |
title | Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Parallel%20Sensor%20Orientation%20for%20Assessing%20Energy%20Balance%20Components%20on%20Mountain%20Slopes&rft.jtitle=Boundary-layer%20meteorology&rft.au=Serrano-Ortiz,%20P.&rft.date=2016-03-01&rft.volume=158&rft.issue=3&rft.spage=489&rft.epage=499&rft.pages=489-499&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-015-0099-4&rft_dat=%3Cgale_proqu%3EA443488576%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765329535&rft_id=info:pmid/&rft_galeid=A443488576&rfr_iscdi=true |