Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes

The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2016-03, Vol.158 (3), p.489-499
Hauptverfasser: Serrano-Ortiz, P., Sánchez-Cañete, E. P., Olmo, F. J., Metzger, S., Pérez-Priego, O., Carrara, A., Alados-Arboledas, L., Kowalski, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 3
container_start_page 489
container_title Boundary-layer meteorology
container_volume 158
creator Serrano-Ortiz, P.
Sánchez-Cañete, E. P.
Olmo, F. J.
Metzger, S.
Pérez-Priego, O.
Carrara, A.
Alados-Arboledas, L.
Kowalski, A. S.
description The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation ( R n ) and soil heat fluxes ( G ) are treated differently, and typically only R n is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal R n and G . For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal R n , when only vertical R n measurements are available.
doi_str_mv 10.1007/s10546-015-0099-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1765329535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443488576</galeid><sourcerecordid>A443488576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</originalsourceid><addsrcrecordid>eNp1kEtLLDEQRoNcwbnqD3DX4DpaSefVy7mDL1AURreGmK4MLT3JmPQs_PdG-i7cSBZFhXNSqY-QMwYXDEBfFgZSKApMUoCuo-KALJjULWVC8z9kAQCKmpaJI_K3lPfaaiZhQV7X-xycR_rkshtHHJs1xpJy85gHjJObhhSbUPtlKVjKEDfNVcS8-Wz-udFFj80qbXcpVrY0FX1I-2oNsVmPaYflhBwGNxY8_V-Pycv11fPqlt4_3tytlvfUCy4nGvruzWtpUMlgEIRXxhunQLeMexWU0W9KMxNED73sA3DQDsED7wTveOjaY3I-v7vL6WOPZbLvaZ9jHWmZVrLlnWxlpS5mauNGtEMMacrO19PjdvB1iTDU-6UQrTBGalUFNgs-p1IyBrvLw9blT8vAfudu59xtzd1-525FdfjslMrGDeYfX_lV-gLPeoUf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765329535</pqid></control><display><type>article</type><title>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Serrano-Ortiz, P. ; Sánchez-Cañete, E. P. ; Olmo, F. J. ; Metzger, S. ; Pérez-Priego, O. ; Carrara, A. ; Alados-Arboledas, L. ; Kowalski, A. S.</creator><creatorcontrib>Serrano-Ortiz, P. ; Sánchez-Cañete, E. P. ; Olmo, F. J. ; Metzger, S. ; Pérez-Priego, O. ; Carrara, A. ; Alados-Arboledas, L. ; Kowalski, A. S.</creatorcontrib><description>The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation ( R n ) and soil heat fluxes ( G ) are treated differently, and typically only R n is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal R n and G . For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal R n , when only vertical R n measurements are available.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-015-0099-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Earth and Environmental Science ; Earth Sciences ; Energy balance ; Instrumentation ; Latent heat ; Meteorology ; Mountains ; Net radiation ; Notes and Comments ; Sensors ; Soil sciences ; Thermodynamics ; Turbulence</subject><ispartof>Boundary-layer meteorology, 2016-03, Vol.158 (3), p.489-499</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</citedby><cites>FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-015-0099-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-015-0099-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Serrano-Ortiz, P.</creatorcontrib><creatorcontrib>Sánchez-Cañete, E. P.</creatorcontrib><creatorcontrib>Olmo, F. J.</creatorcontrib><creatorcontrib>Metzger, S.</creatorcontrib><creatorcontrib>Pérez-Priego, O.</creatorcontrib><creatorcontrib>Carrara, A.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><creatorcontrib>Kowalski, A. S.</creatorcontrib><title>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation ( R n ) and soil heat fluxes ( G ) are treated differently, and typically only R n is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal R n and G . For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal R n , when only vertical R n measurements are available.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy balance</subject><subject>Instrumentation</subject><subject>Latent heat</subject><subject>Meteorology</subject><subject>Mountains</subject><subject>Net radiation</subject><subject>Notes and Comments</subject><subject>Sensors</subject><subject>Soil sciences</subject><subject>Thermodynamics</subject><subject>Turbulence</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLLDEQRoNcwbnqD3DX4DpaSefVy7mDL1AURreGmK4MLT3JmPQs_PdG-i7cSBZFhXNSqY-QMwYXDEBfFgZSKApMUoCuo-KALJjULWVC8z9kAQCKmpaJI_K3lPfaaiZhQV7X-xycR_rkshtHHJs1xpJy85gHjJObhhSbUPtlKVjKEDfNVcS8-Wz-udFFj80qbXcpVrY0FX1I-2oNsVmPaYflhBwGNxY8_V-Pycv11fPqlt4_3tytlvfUCy4nGvruzWtpUMlgEIRXxhunQLeMexWU0W9KMxNED73sA3DQDsED7wTveOjaY3I-v7vL6WOPZbLvaZ9jHWmZVrLlnWxlpS5mauNGtEMMacrO19PjdvB1iTDU-6UQrTBGalUFNgs-p1IyBrvLw9blT8vAfudu59xtzd1-525FdfjslMrGDeYfX_lV-gLPeoUf</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Serrano-Ortiz, P.</creator><creator>Sánchez-Cañete, E. P.</creator><creator>Olmo, F. J.</creator><creator>Metzger, S.</creator><creator>Pérez-Priego, O.</creator><creator>Carrara, A.</creator><creator>Alados-Arboledas, L.</creator><creator>Kowalski, A. S.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20160301</creationdate><title>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</title><author>Serrano-Ortiz, P. ; Sánchez-Cañete, E. P. ; Olmo, F. J. ; Metzger, S. ; Pérez-Priego, O. ; Carrara, A. ; Alados-Arboledas, L. ; Kowalski, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-fd9bc758e65f8e04c68c8a607312c6f687b6718f4d0d5df0207ae0c0294292f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy balance</topic><topic>Instrumentation</topic><topic>Latent heat</topic><topic>Meteorology</topic><topic>Mountains</topic><topic>Net radiation</topic><topic>Notes and Comments</topic><topic>Sensors</topic><topic>Soil sciences</topic><topic>Thermodynamics</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serrano-Ortiz, P.</creatorcontrib><creatorcontrib>Sánchez-Cañete, E. P.</creatorcontrib><creatorcontrib>Olmo, F. J.</creatorcontrib><creatorcontrib>Metzger, S.</creatorcontrib><creatorcontrib>Pérez-Priego, O.</creatorcontrib><creatorcontrib>Carrara, A.</creatorcontrib><creatorcontrib>Alados-Arboledas, L.</creatorcontrib><creatorcontrib>Kowalski, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serrano-Ortiz, P.</au><au>Sánchez-Cañete, E. P.</au><au>Olmo, F. J.</au><au>Metzger, S.</au><au>Pérez-Priego, O.</au><au>Carrara, A.</au><au>Alados-Arboledas, L.</au><au>Kowalski, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>158</volume><issue>3</issue><spage>489</spage><epage>499</epage><pages>489-499</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation ( R n ) and soil heat fluxes ( G ) are treated differently, and typically only R n is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal R n and G . For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal R n , when only vertical R n measurements are available.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-015-0099-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2016-03, Vol.158 (3), p.489-499
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_journals_1765329535
source SpringerLink Journals - AutoHoldings
subjects Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Earth and Environmental Science
Earth Sciences
Energy balance
Instrumentation
Latent heat
Meteorology
Mountains
Net radiation
Notes and Comments
Sensors
Soil sciences
Thermodynamics
Turbulence
title Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Parallel%20Sensor%20Orientation%20for%20Assessing%20Energy%20Balance%20Components%20on%20Mountain%20Slopes&rft.jtitle=Boundary-layer%20meteorology&rft.au=Serrano-Ortiz,%20P.&rft.date=2016-03-01&rft.volume=158&rft.issue=3&rft.spage=489&rft.epage=499&rft.pages=489-499&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-015-0099-4&rft_dat=%3Cgale_proqu%3EA443488576%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765329535&rft_id=info:pmid/&rft_galeid=A443488576&rfr_iscdi=true