A simple and general approach to fitting the discount curve under no-arbitrage constraints
•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•Th...
Gespeichert in:
Veröffentlicht in: | Finance research letters 2015-11, Vol.15, p.78-84 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | Finance research letters |
container_volume | 15 |
creator | Fengler, Matthias R. Hin, Lin-Yee |
description | •We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant.
We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant. |
doi_str_mv | 10.1016/j.frl.2015.08.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1765134212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S154461231500080X</els_id><sourcerecordid>3953062821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvAU8tyZNm6Z4Wha_YMGLXryENHndTemmNUkX_PdmWfHo6Q2PmfdmBqFbSnJKKL_v884PeUFolRORE8LP0IJWZZlxyuj5Hy7YJboKoSekqEXNF-hzhYPdTwNg5QzeggOvBqymyY9K73AccWdjtG6L4w6wsUGPs4tYz_4AeHYGPHZjpnxro1dbwHp0ISHrYrhGF50aAtz8ziX6eHp8X79km7fn1_Vqk2nWNDFTHSm4IgRqMNCIkoiiFSlA0_KK0bbVrWGG8lYI0QgtTFc1jELVgKpUWjC2RHenu8nz1wwhyn6cvUsvJa15RVlZpNxLRE8s7ccQPHRy8nav_LekRB4rlL1MFcpjhZIImRwkzcNJA8n-wYKXQVtwGoz1oKM0o_1H_QPZ8nnx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765134212</pqid></control><display><type>article</type><title>A simple and general approach to fitting the discount curve under no-arbitrage constraints</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fengler, Matthias R. ; Hin, Lin-Yee</creator><creatorcontrib>Fengler, Matthias R. ; Hin, Lin-Yee</creatorcontrib><description>•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant.
We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant.</description><identifier>ISSN: 1544-6123</identifier><identifier>EISSN: 1544-6131</identifier><identifier>DOI: 10.1016/j.frl.2015.08.006</identifier><language>eng</language><publisher>San Diego: Elsevier Inc</publisher><subject>Arbitrage ; B-splines ; Discount curve ; Mathematical functions ; Monotone estimation ; No-arbitrage constraints ; Polynomials ; Studies ; Yield curve</subject><ispartof>Finance research letters, 2015-11, Vol.15, p.78-84</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright Academic Press Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</citedby><cites>FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.frl.2015.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fengler, Matthias R.</creatorcontrib><creatorcontrib>Hin, Lin-Yee</creatorcontrib><title>A simple and general approach to fitting the discount curve under no-arbitrage constraints</title><title>Finance research letters</title><description>•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant.
We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant.</description><subject>Arbitrage</subject><subject>B-splines</subject><subject>Discount curve</subject><subject>Mathematical functions</subject><subject>Monotone estimation</subject><subject>No-arbitrage constraints</subject><subject>Polynomials</subject><subject>Studies</subject><subject>Yield curve</subject><issn>1544-6123</issn><issn>1544-6131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvAU8tyZNm6Z4Wha_YMGLXryENHndTemmNUkX_PdmWfHo6Q2PmfdmBqFbSnJKKL_v884PeUFolRORE8LP0IJWZZlxyuj5Hy7YJboKoSekqEXNF-hzhYPdTwNg5QzeggOvBqymyY9K73AccWdjtG6L4w6wsUGPs4tYz_4AeHYGPHZjpnxro1dbwHp0ISHrYrhGF50aAtz8ziX6eHp8X79km7fn1_Vqk2nWNDFTHSm4IgRqMNCIkoiiFSlA0_KK0bbVrWGG8lYI0QgtTFc1jELVgKpUWjC2RHenu8nz1wwhyn6cvUsvJa15RVlZpNxLRE8s7ccQPHRy8nav_LekRB4rlL1MFcpjhZIImRwkzcNJA8n-wYKXQVtwGoz1oKM0o_1H_QPZ8nnx</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Fengler, Matthias R.</creator><creator>Hin, Lin-Yee</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>A simple and general approach to fitting the discount curve under no-arbitrage constraints</title><author>Fengler, Matthias R. ; Hin, Lin-Yee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arbitrage</topic><topic>B-splines</topic><topic>Discount curve</topic><topic>Mathematical functions</topic><topic>Monotone estimation</topic><topic>No-arbitrage constraints</topic><topic>Polynomials</topic><topic>Studies</topic><topic>Yield curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fengler, Matthias R.</creatorcontrib><creatorcontrib>Hin, Lin-Yee</creatorcontrib><collection>CrossRef</collection><jtitle>Finance research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fengler, Matthias R.</au><au>Hin, Lin-Yee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple and general approach to fitting the discount curve under no-arbitrage constraints</atitle><jtitle>Finance research letters</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>15</volume><spage>78</spage><epage>84</epage><pages>78-84</pages><issn>1544-6123</issn><eissn>1544-6131</eissn><abstract>•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant.
We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant.</abstract><cop>San Diego</cop><pub>Elsevier Inc</pub><doi>10.1016/j.frl.2015.08.006</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1544-6123 |
ispartof | Finance research letters, 2015-11, Vol.15, p.78-84 |
issn | 1544-6123 1544-6131 |
language | eng |
recordid | cdi_proquest_journals_1765134212 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Arbitrage B-splines Discount curve Mathematical functions Monotone estimation No-arbitrage constraints Polynomials Studies Yield curve |
title | A simple and general approach to fitting the discount curve under no-arbitrage constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20and%20general%20approach%20to%20fitting%20the%20discount%20curve%20under%20no-arbitrage%20constraints&rft.jtitle=Finance%20research%20letters&rft.au=Fengler,%20Matthias%20R.&rft.date=2015-11-01&rft.volume=15&rft.spage=78&rft.epage=84&rft.pages=78-84&rft.issn=1544-6123&rft.eissn=1544-6131&rft_id=info:doi/10.1016/j.frl.2015.08.006&rft_dat=%3Cproquest_cross%3E3953062821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765134212&rft_id=info:pmid/&rft_els_id=S154461231500080X&rfr_iscdi=true |