A simple and general approach to fitting the discount curve under no-arbitrage constraints

•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finance research letters 2015-11, Vol.15, p.78-84
Hauptverfasser: Fengler, Matthias R., Hin, Lin-Yee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 78
container_title Finance research letters
container_volume 15
creator Fengler, Matthias R.
Hin, Lin-Yee
description •We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant. We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant.
doi_str_mv 10.1016/j.frl.2015.08.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1765134212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S154461231500080X</els_id><sourcerecordid>3953062821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvAU8tyZNm6Z4Wha_YMGLXryENHndTemmNUkX_PdmWfHo6Q2PmfdmBqFbSnJKKL_v884PeUFolRORE8LP0IJWZZlxyuj5Hy7YJboKoSekqEXNF-hzhYPdTwNg5QzeggOvBqymyY9K73AccWdjtG6L4w6wsUGPs4tYz_4AeHYGPHZjpnxro1dbwHp0ISHrYrhGF50aAtz8ziX6eHp8X79km7fn1_Vqk2nWNDFTHSm4IgRqMNCIkoiiFSlA0_KK0bbVrWGG8lYI0QgtTFc1jELVgKpUWjC2RHenu8nz1wwhyn6cvUsvJa15RVlZpNxLRE8s7ccQPHRy8nav_LekRB4rlL1MFcpjhZIImRwkzcNJA8n-wYKXQVtwGoz1oKM0o_1H_QPZ8nnx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765134212</pqid></control><display><type>article</type><title>A simple and general approach to fitting the discount curve under no-arbitrage constraints</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fengler, Matthias R. ; Hin, Lin-Yee</creator><creatorcontrib>Fengler, Matthias R. ; Hin, Lin-Yee</creatorcontrib><description>•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant. We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant.</description><identifier>ISSN: 1544-6123</identifier><identifier>EISSN: 1544-6131</identifier><identifier>DOI: 10.1016/j.frl.2015.08.006</identifier><language>eng</language><publisher>San Diego: Elsevier Inc</publisher><subject>Arbitrage ; B-splines ; Discount curve ; Mathematical functions ; Monotone estimation ; No-arbitrage constraints ; Polynomials ; Studies ; Yield curve</subject><ispartof>Finance research letters, 2015-11, Vol.15, p.78-84</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright Academic Press Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</citedby><cites>FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.frl.2015.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fengler, Matthias R.</creatorcontrib><creatorcontrib>Hin, Lin-Yee</creatorcontrib><title>A simple and general approach to fitting the discount curve under no-arbitrage constraints</title><title>Finance research letters</title><description>•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant. We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant.</description><subject>Arbitrage</subject><subject>B-splines</subject><subject>Discount curve</subject><subject>Mathematical functions</subject><subject>Monotone estimation</subject><subject>No-arbitrage constraints</subject><subject>Polynomials</subject><subject>Studies</subject><subject>Yield curve</subject><issn>1544-6123</issn><issn>1544-6131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvAU8tyZNm6Z4Wha_YMGLXryENHndTemmNUkX_PdmWfHo6Q2PmfdmBqFbSnJKKL_v884PeUFolRORE8LP0IJWZZlxyuj5Hy7YJboKoSekqEXNF-hzhYPdTwNg5QzeggOvBqymyY9K73AccWdjtG6L4w6wsUGPs4tYz_4AeHYGPHZjpnxro1dbwHp0ISHrYrhGF50aAtz8ziX6eHp8X79km7fn1_Vqk2nWNDFTHSm4IgRqMNCIkoiiFSlA0_KK0bbVrWGG8lYI0QgtTFc1jELVgKpUWjC2RHenu8nz1wwhyn6cvUsvJa15RVlZpNxLRE8s7ccQPHRy8nav_LekRB4rlL1MFcpjhZIImRwkzcNJA8n-wYKXQVtwGoz1oKM0o_1H_QPZ8nnx</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Fengler, Matthias R.</creator><creator>Hin, Lin-Yee</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>A simple and general approach to fitting the discount curve under no-arbitrage constraints</title><author>Fengler, Matthias R. ; Hin, Lin-Yee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-af026a00e7ede984082b80069b6531bbcbd3d16b88898c8df5931e59ea5a98c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arbitrage</topic><topic>B-splines</topic><topic>Discount curve</topic><topic>Mathematical functions</topic><topic>Monotone estimation</topic><topic>No-arbitrage constraints</topic><topic>Polynomials</topic><topic>Studies</topic><topic>Yield curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fengler, Matthias R.</creatorcontrib><creatorcontrib>Hin, Lin-Yee</creatorcontrib><collection>CrossRef</collection><jtitle>Finance research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fengler, Matthias R.</au><au>Hin, Lin-Yee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple and general approach to fitting the discount curve under no-arbitrage constraints</atitle><jtitle>Finance research letters</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>15</volume><spage>78</spage><epage>84</epage><pages>78-84</pages><issn>1544-6123</issn><eissn>1544-6131</eissn><abstract>•We describe a framework to fitting the discount curve under shape constraints.•The estimator is a monotonic penalized B-spline of arbitrary degree.•We estimate under the L1 and the L2 loss functions using two alternate penalties.•Empirical results show that the cubic estimators perform the best.•The penalty and the loss functions are less relevant. We suggest a simple and general approach to fitting the discount curve under no-arbitrage constraints based on a penalized shape-constrained B-spline. The approach accommodates B-splines of any order and fitting both under the L1 and the L2 loss functions. An application to US STRIPS data from 2001–2015 suggests that polynomial splines of order three and four are mandatory to obtain reasonable fits. The choice of the loss function appears to be less relevant.</abstract><cop>San Diego</cop><pub>Elsevier Inc</pub><doi>10.1016/j.frl.2015.08.006</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1544-6123
ispartof Finance research letters, 2015-11, Vol.15, p.78-84
issn 1544-6123
1544-6131
language eng
recordid cdi_proquest_journals_1765134212
source Elsevier ScienceDirect Journals Complete
subjects Arbitrage
B-splines
Discount curve
Mathematical functions
Monotone estimation
No-arbitrage constraints
Polynomials
Studies
Yield curve
title A simple and general approach to fitting the discount curve under no-arbitrage constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20and%20general%20approach%20to%20fitting%20the%20discount%20curve%20under%20no-arbitrage%20constraints&rft.jtitle=Finance%20research%20letters&rft.au=Fengler,%20Matthias%20R.&rft.date=2015-11-01&rft.volume=15&rft.spage=78&rft.epage=84&rft.pages=78-84&rft.issn=1544-6123&rft.eissn=1544-6131&rft_id=info:doi/10.1016/j.frl.2015.08.006&rft_dat=%3Cproquest_cross%3E3953062821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765134212&rft_id=info:pmid/&rft_els_id=S154461231500080X&rfr_iscdi=true