Analysis on Load-Adaptive Phase-Shift Control for High Efficiency Full-Bridge LLC Resonant Converter Under Light-Load Conditions
Recently, the full-bridge (FB) LLC resonant converter is getting more attention due to its zero-voltage switching of the primary switches, zero-current switching of rectifier diodes, and high power capability. However, the conversion efficiency is degraded under light-load conditions due to the core...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2016-07, Vol.31 (7), p.4942-4955 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, the full-bridge (FB) LLC resonant converter is getting more attention due to its zero-voltage switching of the primary switches, zero-current switching of rectifier diodes, and high power capability. However, the conversion efficiency is degraded under light-load conditions due to the core loss in magnetic components and the switching loss in semiconductor devices. In this paper, a new control method is proposed for the FB LLC resonant converter. In the proposed method, the frequency control is basically used to regulate the output voltage over entire load conditions. Moreover, the proposed method utilizes phase-shifted gate signals between switch legs, based on predetermined optimal duty ratio under light-load conditions. At this point, the optimal duty ratio is determined to get minimum power loss under each light-load condition through the loss analysis of all components. Therefore, the proposed method makes high efficiency under light-load conditions. To confirm the validity of this paper, the prototype of the network power supply with 320-385 V dc input and 48 V/720 W dc output is tested. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2015.2462077 |