Self-exciting threshold models for time series of counts with a finite range
In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenn...
Gespeichert in:
Veröffentlicht in: | Stochastic models 2016-01, Vol.32 (1), p.77-98 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Stochastic models |
container_volume | 32 |
creator | Möller, Tobias A. |
description | In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation. |
doi_str_mv | 10.1080/15326349.2015.1085319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1762974187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3945613441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQQh43prsbjbJTSn-g4IH9RyyyaRN2W5qklL77d2l9epphuG9N7wfQreUzCgR5J6yqmyqWs5KQtl4YhWVZ2gy3ou6pPX5aR9Fl-gqpTUZlFyICVp8QOcK-DE--36J8ypCWoXO4k2w0CXsQsTZbwAniB4SDg6bsOtzwnufV1hj53ufAUfdL-EaXTjdJbg5zSn6en76nL8Wi_eXt_njojA1EbkQxmrKwFEjSmI5kQ1lthG8FZpK2mpjXSVbzhpnhYS2ZbYCXTfSNRxqAbKaortj7jaG7x2krNZhF_vhpaK8KSWvqeCDih1VJoaUIji1jX6j40FRokZw6g-cGsGpE7jB93D0-X5ov9H7EDursj50Ibqhp_FJVf9H_AIpiXTh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762974187</pqid></control><display><type>article</type><title>Self-exciting threshold models for time series of counts with a finite range</title><source>EBSCOhost Business Source Complete</source><creator>Möller, Tobias A.</creator><creatorcontrib>Möller, Tobias A.</creatorcontrib><description>In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation.</description><identifier>ISSN: 1532-6349</identifier><identifier>EISSN: 1532-4214</identifier><identifier>DOI: 10.1080/15326349.2015.1085319</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Binomial INARCH model ; count data time series ; Parameter estimation ; self-exciting threshold ; Stochastic models ; Time series ; zero-inflation</subject><ispartof>Stochastic models, 2016-01, Vol.32 (1), p.77-98</ispartof><rights>2016 Taylor & Francis 2016</rights><rights>2016 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</citedby><cites>FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Möller, Tobias A.</creatorcontrib><title>Self-exciting threshold models for time series of counts with a finite range</title><title>Stochastic models</title><description>In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation.</description><subject>Binomial INARCH model</subject><subject>count data time series</subject><subject>Parameter estimation</subject><subject>self-exciting threshold</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>zero-inflation</subject><issn>1532-6349</issn><issn>1532-4214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQQh43prsbjbJTSn-g4IH9RyyyaRN2W5qklL77d2l9epphuG9N7wfQreUzCgR5J6yqmyqWs5KQtl4YhWVZ2gy3ou6pPX5aR9Fl-gqpTUZlFyICVp8QOcK-DE--36J8ypCWoXO4k2w0CXsQsTZbwAniB4SDg6bsOtzwnufV1hj53ufAUfdL-EaXTjdJbg5zSn6en76nL8Wi_eXt_njojA1EbkQxmrKwFEjSmI5kQ1lthG8FZpK2mpjXSVbzhpnhYS2ZbYCXTfSNRxqAbKaortj7jaG7x2krNZhF_vhpaK8KSWvqeCDih1VJoaUIji1jX6j40FRokZw6g-cGsGpE7jB93D0-X5ov9H7EDursj50Ibqhp_FJVf9H_AIpiXTh</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Möller, Tobias A.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160102</creationdate><title>Self-exciting threshold models for time series of counts with a finite range</title><author>Möller, Tobias A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binomial INARCH model</topic><topic>count data time series</topic><topic>Parameter estimation</topic><topic>self-exciting threshold</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>zero-inflation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Möller, Tobias A.</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastic models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möller, Tobias A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-exciting threshold models for time series of counts with a finite range</atitle><jtitle>Stochastic models</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>32</volume><issue>1</issue><spage>77</spage><epage>98</epage><pages>77-98</pages><issn>1532-6349</issn><eissn>1532-4214</eissn><abstract>In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/15326349.2015.1085319</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-6349 |
ispartof | Stochastic models, 2016-01, Vol.32 (1), p.77-98 |
issn | 1532-6349 1532-4214 |
language | eng |
recordid | cdi_proquest_journals_1762974187 |
source | EBSCOhost Business Source Complete |
subjects | Binomial INARCH model count data time series Parameter estimation self-exciting threshold Stochastic models Time series zero-inflation |
title | Self-exciting threshold models for time series of counts with a finite range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-exciting%20threshold%20models%20for%20time%20series%20of%20counts%20with%20a%20finite%20range&rft.jtitle=Stochastic%20models&rft.au=M%C3%B6ller,%20Tobias%20A.&rft.date=2016-01-02&rft.volume=32&rft.issue=1&rft.spage=77&rft.epage=98&rft.pages=77-98&rft.issn=1532-6349&rft.eissn=1532-4214&rft_id=info:doi/10.1080/15326349.2015.1085319&rft_dat=%3Cproquest_infor%3E3945613441%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762974187&rft_id=info:pmid/&rfr_iscdi=true |