Self-exciting threshold models for time series of counts with a finite range

In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic models 2016-01, Vol.32 (1), p.77-98
1. Verfasser: Möller, Tobias A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 77
container_title Stochastic models
container_volume 32
creator Möller, Tobias A.
description In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation.
doi_str_mv 10.1080/15326349.2015.1085319
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1762974187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3945613441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQQh43prsbjbJTSn-g4IH9RyyyaRN2W5qklL77d2l9epphuG9N7wfQreUzCgR5J6yqmyqWs5KQtl4YhWVZ2gy3ou6pPX5aR9Fl-gqpTUZlFyICVp8QOcK-DE--36J8ypCWoXO4k2w0CXsQsTZbwAniB4SDg6bsOtzwnufV1hj53ufAUfdL-EaXTjdJbg5zSn6en76nL8Wi_eXt_njojA1EbkQxmrKwFEjSmI5kQ1lthG8FZpK2mpjXSVbzhpnhYS2ZbYCXTfSNRxqAbKaortj7jaG7x2krNZhF_vhpaK8KSWvqeCDih1VJoaUIji1jX6j40FRokZw6g-cGsGpE7jB93D0-X5ov9H7EDursj50Ibqhp_FJVf9H_AIpiXTh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762974187</pqid></control><display><type>article</type><title>Self-exciting threshold models for time series of counts with a finite range</title><source>EBSCOhost Business Source Complete</source><creator>Möller, Tobias A.</creator><creatorcontrib>Möller, Tobias A.</creatorcontrib><description>In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation.</description><identifier>ISSN: 1532-6349</identifier><identifier>EISSN: 1532-4214</identifier><identifier>DOI: 10.1080/15326349.2015.1085319</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Binomial INARCH model ; count data time series ; Parameter estimation ; self-exciting threshold ; Stochastic models ; Time series ; zero-inflation</subject><ispartof>Stochastic models, 2016-01, Vol.32 (1), p.77-98</ispartof><rights>2016 Taylor &amp; Francis 2016</rights><rights>2016 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</citedby><cites>FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Möller, Tobias A.</creatorcontrib><title>Self-exciting threshold models for time series of counts with a finite range</title><title>Stochastic models</title><description>In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation.</description><subject>Binomial INARCH model</subject><subject>count data time series</subject><subject>Parameter estimation</subject><subject>self-exciting threshold</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>zero-inflation</subject><issn>1532-6349</issn><issn>1532-4214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQQh43prsbjbJTSn-g4IH9RyyyaRN2W5qklL77d2l9epphuG9N7wfQreUzCgR5J6yqmyqWs5KQtl4YhWVZ2gy3ou6pPX5aR9Fl-gqpTUZlFyICVp8QOcK-DE--36J8ypCWoXO4k2w0CXsQsTZbwAniB4SDg6bsOtzwnufV1hj53ufAUfdL-EaXTjdJbg5zSn6en76nL8Wi_eXt_njojA1EbkQxmrKwFEjSmI5kQ1lthG8FZpK2mpjXSVbzhpnhYS2ZbYCXTfSNRxqAbKaortj7jaG7x2krNZhF_vhpaK8KSWvqeCDih1VJoaUIji1jX6j40FRokZw6g-cGsGpE7jB93D0-X5ov9H7EDursj50Ibqhp_FJVf9H_AIpiXTh</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Möller, Tobias A.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160102</creationdate><title>Self-exciting threshold models for time series of counts with a finite range</title><author>Möller, Tobias A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8cda15ef1c820d709615d687b8a191bacdf39b756fd89ebb5d3ea469f67e48e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binomial INARCH model</topic><topic>count data time series</topic><topic>Parameter estimation</topic><topic>self-exciting threshold</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>zero-inflation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Möller, Tobias A.</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastic models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möller, Tobias A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-exciting threshold models for time series of counts with a finite range</atitle><jtitle>Stochastic models</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>32</volume><issue>1</issue><spage>77</spage><epage>98</epage><pages>77-98</pages><issn>1532-6349</issn><eissn>1532-4214</eissn><abstract>In this article, an integer-valued self-exciting threshold model with a finite range based on the binomial INARCH(1) model is proposed. Important stochastic properties are derived, and approaches for parameter estimation are discussed. A real-data example about the regional spread of public drunkenness in Pittsburgh demonstrates the applicability of the new model in comparison to existing models. Feasible modifications of the model are presented, which are designed to handle special features such as zero-inflation.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15326349.2015.1085319</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-6349
ispartof Stochastic models, 2016-01, Vol.32 (1), p.77-98
issn 1532-6349
1532-4214
language eng
recordid cdi_proquest_journals_1762974187
source EBSCOhost Business Source Complete
subjects Binomial INARCH model
count data time series
Parameter estimation
self-exciting threshold
Stochastic models
Time series
zero-inflation
title Self-exciting threshold models for time series of counts with a finite range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-exciting%20threshold%20models%20for%20time%20series%20of%20counts%20with%20a%20finite%20range&rft.jtitle=Stochastic%20models&rft.au=M%C3%B6ller,%20Tobias%20A.&rft.date=2016-01-02&rft.volume=32&rft.issue=1&rft.spage=77&rft.epage=98&rft.pages=77-98&rft.issn=1532-6349&rft.eissn=1532-4214&rft_id=info:doi/10.1080/15326349.2015.1085319&rft_dat=%3Cproquest_infor%3E3945613441%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762974187&rft_id=info:pmid/&rfr_iscdi=true