Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO^sub 2^-Exposed Wellbore Cement
To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2016-01, Vol.50 (2), p.1031 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1031 |
container_title | Environmental science & technology |
container_volume | 50 |
creator | Hangx, Suzanne JT van der Linden, Arjan Marcelis, Fons Liteanu, Emilia |
description | To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1762721999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3943884851</sourcerecordid><originalsourceid>FETCH-proquest_journals_17627219993</originalsourceid><addsrcrecordid>eNqNjM0KgkAURmdR0O87XGgtjAqW20yplRBB0ULRvNbEdMfmR3r8XPQArQ585-OM2JRzP_TiMLpM2MyYJ-c8CPlmyt47bAUJuoN9IGy1sFYiZJWQTiOk1KNUHRpQLRyoEb1oXCXhiNXNCkVwVTTIvDaoe2xAECR5YVwNQeGln06ZYTyjlLUaagm-kOyCjdtKGlz-OGerLD0le6_T6u3Q2PKpnKZBlf46CtaBH8dx-N_rC0iRSfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762721999</pqid></control><display><type>article</type><title>Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO^sub 2^-Exposed Wellbore Cement</title><source>ACS Publications</source><creator>Hangx, Suzanne JT ; van der Linden, Arjan ; Marcelis, Fons ; Liteanu, Emilia</creator><creatorcontrib>Hangx, Suzanne JT ; van der Linden, Arjan ; Marcelis, Fons ; Liteanu, Emilia</creatorcontrib><description>To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions.</description><identifier>ISSN: 0013-936X</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Carbon dioxide ; Cement ; Leakage ; Mechanical properties</subject><ispartof>Environmental science & technology, 2016-01, Vol.50 (2), p.1031</ispartof><rights>Copyright American Chemical Society Jan 19, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Hangx, Suzanne JT</creatorcontrib><creatorcontrib>van der Linden, Arjan</creatorcontrib><creatorcontrib>Marcelis, Fons</creatorcontrib><creatorcontrib>Liteanu, Emilia</creatorcontrib><title>Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO^sub 2^-Exposed Wellbore Cement</title><title>Environmental science & technology</title><description>To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions.</description><subject>Carbon dioxide</subject><subject>Cement</subject><subject>Leakage</subject><subject>Mechanical properties</subject><issn>0013-936X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNjM0KgkAURmdR0O87XGgtjAqW20yplRBB0ULRvNbEdMfmR3r8XPQArQ585-OM2JRzP_TiMLpM2MyYJ-c8CPlmyt47bAUJuoN9IGy1sFYiZJWQTiOk1KNUHRpQLRyoEb1oXCXhiNXNCkVwVTTIvDaoe2xAECR5YVwNQeGln06ZYTyjlLUaagm-kOyCjdtKGlz-OGerLD0le6_T6u3Q2PKpnKZBlf46CtaBH8dx-N_rC0iRSfE</recordid><startdate>20160119</startdate><enddate>20160119</enddate><creator>Hangx, Suzanne JT</creator><creator>van der Linden, Arjan</creator><creator>Marcelis, Fons</creator><creator>Liteanu, Emilia</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20160119</creationdate><title>Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO^sub 2^-Exposed Wellbore Cement</title><author>Hangx, Suzanne JT ; van der Linden, Arjan ; Marcelis, Fons ; Liteanu, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_17627219993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon dioxide</topic><topic>Cement</topic><topic>Leakage</topic><topic>Mechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hangx, Suzanne JT</creatorcontrib><creatorcontrib>van der Linden, Arjan</creatorcontrib><creatorcontrib>Marcelis, Fons</creatorcontrib><creatorcontrib>Liteanu, Emilia</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hangx, Suzanne JT</au><au>van der Linden, Arjan</au><au>Marcelis, Fons</au><au>Liteanu, Emilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO^sub 2^-Exposed Wellbore Cement</atitle><jtitle>Environmental science & technology</jtitle><date>2016-01-19</date><risdate>2016</risdate><volume>50</volume><issue>2</issue><spage>1031</spage><pages>1031-</pages><issn>0013-936X</issn><coden>ESTHAG</coden><abstract>To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions.</abstract><cop>Easton</cop><pub>American Chemical Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2016-01, Vol.50 (2), p.1031 |
issn | 0013-936X |
language | eng |
recordid | cdi_proquest_journals_1762721999 |
source | ACS Publications |
subjects | Carbon dioxide Cement Leakage Mechanical properties |
title | Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO^sub 2^-Exposed Wellbore Cement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20Brittle%20Failure%20Envelopes%20of%20Individual%20Reaction%20Zones%20Observed%20in%20CO%5Esub%202%5E-Exposed%20Wellbore%20Cement&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Hangx,%20Suzanne%20JT&rft.date=2016-01-19&rft.volume=50&rft.issue=2&rft.spage=1031&rft.pages=1031-&rft.issn=0013-936X&rft.coden=ESTHAG&rft_id=info:doi/&rft_dat=%3Cproquest%3E3943884851%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762721999&rft_id=info:pmid/&rfr_iscdi=true |