Single-scan: a fast star-join query processing algorithm
Summary A data warehouse can store very large amounts of data that should be processed in parallel in order to achieve reasonable query execution times. The MapReduce programming model is a very convenient way to process large amounts of data in parallel on commodity hardware clusters. A very popula...
Gespeichert in:
Veröffentlicht in: | Software, practice & experience practice & experience, 2016-03, Vol.46 (3), p.319-339 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 3 |
container_start_page | 319 |
container_title | Software, practice & experience |
container_volume | 46 |
creator | PurdilA, Vasile Pentiuc, Stefan-Gheorghe |
description | Summary
A data warehouse can store very large amounts of data that should be processed in parallel in order to achieve reasonable query execution times. The MapReduce programming model is a very convenient way to process large amounts of data in parallel on commodity hardware clusters. A very popular query used in data warehouses is star‐join. In this paper, we present a fast and efficient star‐join query execution algorithm built on top of a MapReduce framework called Hadoop. By using dynamic filters against dimension tables, the algorithm needs a single scan of the fact table, which means a significant reduction of input/output operations and computational complexity. Also, the algorithm requires only two MapReduce iterations in total–one to build the filters against dimension tables and one to scan the fact table. Our experiments show that the proposed algorithm performs much better than the existing solutions in terms of execution time and input/output. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/spe.2308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1761634085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3939391421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-a03adeca64f1b1188fed542db2842bfbd8c7f0876c87839ebe671f4e76dbe4563</originalsourceid><addsrcrecordid>eNpFkF1LwzAYhYMoOKfgTyh4nfnmo0nmnY7ZCUMHUyrehLRNZmfXzqRD--_tmOjVuXk45_AgdElgRADoddjaEWWgjtCAwFhioPz1GA0AmMIgOD9FZyGsAQiJqRggtSzrVWVxyE19E5nImdBGoTUer5uyjj531nfR1je5DaEnI1OtGl-275tzdOJMFezFbw7Ry_30eTLD86fkYXI7xzkTSmEDzBQ2N4I7khGilLNFzGmRUcVp5rJC5dKBkiJXUrGxzayQxHErRZFZHgs2RFeH3v5E_ya0et3sfN1PaiIFEYyDinsKH6ivsrKd3vpyY3ynCei9FN1L0XspermY7vOfL0Nrv_944z-0kEzGOn1M9CKdxeQuedMp-wGZDGU1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761634085</pqid></control><display><type>article</type><title>Single-scan: a fast star-join query processing algorithm</title><source>Access via Wiley Online Library</source><creator>PurdilA, Vasile ; Pentiuc, Stefan-Gheorghe</creator><creatorcontrib>PurdilA, Vasile ; Pentiuc, Stefan-Gheorghe</creatorcontrib><description>Summary
A data warehouse can store very large amounts of data that should be processed in parallel in order to achieve reasonable query execution times. The MapReduce programming model is a very convenient way to process large amounts of data in parallel on commodity hardware clusters. A very popular query used in data warehouses is star‐join. In this paper, we present a fast and efficient star‐join query execution algorithm built on top of a MapReduce framework called Hadoop. By using dynamic filters against dimension tables, the algorithm needs a single scan of the fact table, which means a significant reduction of input/output operations and computational complexity. Also, the algorithm requires only two MapReduce iterations in total–one to build the filters against dimension tables and one to scan the fact table. Our experiments show that the proposed algorithm performs much better than the existing solutions in terms of execution time and input/output. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2308</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>algorithm ; Bloom filter ; data warehouse ; dimension table ; fact table ; Hadoop ; MapReduce ; parallel processing ; star-join</subject><ispartof>Software, practice & experience, 2016-03, Vol.46 (3), p.319-339</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3688-a03adeca64f1b1188fed542db2842bfbd8c7f0876c87839ebe671f4e76dbe4563</citedby><orcidid>0000-0002-5239-9493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>PurdilA, Vasile</creatorcontrib><creatorcontrib>Pentiuc, Stefan-Gheorghe</creatorcontrib><title>Single-scan: a fast star-join query processing algorithm</title><title>Software, practice & experience</title><addtitle>Softw. Pract. Exper</addtitle><description>Summary
A data warehouse can store very large amounts of data that should be processed in parallel in order to achieve reasonable query execution times. The MapReduce programming model is a very convenient way to process large amounts of data in parallel on commodity hardware clusters. A very popular query used in data warehouses is star‐join. In this paper, we present a fast and efficient star‐join query execution algorithm built on top of a MapReduce framework called Hadoop. By using dynamic filters against dimension tables, the algorithm needs a single scan of the fact table, which means a significant reduction of input/output operations and computational complexity. Also, the algorithm requires only two MapReduce iterations in total–one to build the filters against dimension tables and one to scan the fact table. Our experiments show that the proposed algorithm performs much better than the existing solutions in terms of execution time and input/output. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>algorithm</subject><subject>Bloom filter</subject><subject>data warehouse</subject><subject>dimension table</subject><subject>fact table</subject><subject>Hadoop</subject><subject>MapReduce</subject><subject>parallel processing</subject><subject>star-join</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAYhYMoOKfgTyh4nfnmo0nmnY7ZCUMHUyrehLRNZmfXzqRD--_tmOjVuXk45_AgdElgRADoddjaEWWgjtCAwFhioPz1GA0AmMIgOD9FZyGsAQiJqRggtSzrVWVxyE19E5nImdBGoTUer5uyjj531nfR1je5DaEnI1OtGl-275tzdOJMFezFbw7Ry_30eTLD86fkYXI7xzkTSmEDzBQ2N4I7khGilLNFzGmRUcVp5rJC5dKBkiJXUrGxzayQxHErRZFZHgs2RFeH3v5E_ya0et3sfN1PaiIFEYyDinsKH6ivsrKd3vpyY3ynCei9FN1L0XspermY7vOfL0Nrv_944z-0kEzGOn1M9CKdxeQuedMp-wGZDGU1</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>PurdilA, Vasile</creator><creator>Pentiuc, Stefan-Gheorghe</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5239-9493</orcidid></search><sort><creationdate>201603</creationdate><title>Single-scan: a fast star-join query processing algorithm</title><author>PurdilA, Vasile ; Pentiuc, Stefan-Gheorghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-a03adeca64f1b1188fed542db2842bfbd8c7f0876c87839ebe671f4e76dbe4563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>algorithm</topic><topic>Bloom filter</topic><topic>data warehouse</topic><topic>dimension table</topic><topic>fact table</topic><topic>Hadoop</topic><topic>MapReduce</topic><topic>parallel processing</topic><topic>star-join</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PurdilA, Vasile</creatorcontrib><creatorcontrib>Pentiuc, Stefan-Gheorghe</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice & experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PurdilA, Vasile</au><au>Pentiuc, Stefan-Gheorghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-scan: a fast star-join query processing algorithm</atitle><jtitle>Software, practice & experience</jtitle><addtitle>Softw. Pract. Exper</addtitle><date>2016-03</date><risdate>2016</risdate><volume>46</volume><issue>3</issue><spage>319</spage><epage>339</epage><pages>319-339</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Summary
A data warehouse can store very large amounts of data that should be processed in parallel in order to achieve reasonable query execution times. The MapReduce programming model is a very convenient way to process large amounts of data in parallel on commodity hardware clusters. A very popular query used in data warehouses is star‐join. In this paper, we present a fast and efficient star‐join query execution algorithm built on top of a MapReduce framework called Hadoop. By using dynamic filters against dimension tables, the algorithm needs a single scan of the fact table, which means a significant reduction of input/output operations and computational complexity. Also, the algorithm requires only two MapReduce iterations in total–one to build the filters against dimension tables and one to scan the fact table. Our experiments show that the proposed algorithm performs much better than the existing solutions in terms of execution time and input/output. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/spe.2308</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5239-9493</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0644 |
ispartof | Software, practice & experience, 2016-03, Vol.46 (3), p.319-339 |
issn | 0038-0644 1097-024X |
language | eng |
recordid | cdi_proquest_journals_1761634085 |
source | Access via Wiley Online Library |
subjects | algorithm Bloom filter data warehouse dimension table fact table Hadoop MapReduce parallel processing star-join |
title | Single-scan: a fast star-join query processing algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-scan:%20a%20fast%20star-join%20query%20processing%20algorithm&rft.jtitle=Software,%20practice%20&%20experience&rft.au=PurdilA,%20Vasile&rft.date=2016-03&rft.volume=46&rft.issue=3&rft.spage=319&rft.epage=339&rft.pages=319-339&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2308&rft_dat=%3Cproquest_wiley%3E3939391421%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761634085&rft_id=info:pmid/&rfr_iscdi=true |