Mean-variance analysis of sourcing decision under disruption risk

•Identification of situations with medium-probability and moderate-impact disruptive event.•Application of mean-variance (MV) approach to manage such disruptive events under newsvendor setting.•Studying the structural property of the problem and identifying existence of global maxima, even if the MV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2016-04, Vol.250 (2), p.679-689
Hauptverfasser: Ray, Pritee, Jenamani, Mamata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 2
container_start_page 679
container_title European journal of operational research
container_volume 250
creator Ray, Pritee
Jenamani, Mamata
description •Identification of situations with medium-probability and moderate-impact disruptive event.•Application of mean-variance (MV) approach to manage such disruptive events under newsvendor setting.•Studying the structural property of the problem and identifying existence of global maxima, even if the MV function is complex.•Perform comparative statics analysis to study the behavior of objective functions with respect to few parameters.•Develop an algorithm for MV objective that can handle higher dimensional problem. This study considers a mean-variance (MV) framework for managing disruption risk in a two-echelon supply chain with a risk-averse buyer and multiple unreliable suppliers under newsvendor (NV) setting. An MV objective function is designed to maximize the buyer's expected profit while minimizing its variance. Study of the structural property of the problem proves the existence of a global maxima and a set of efficient portfolios consisting of dominating mean-variance pairs. We demonstrate the effect of model parameters through comparative statics analysis. An algorithm is developed to overcome the computational complexity of the higher dimensional problem. Numerical studies on model behavior show that the proposed algorithm gives the exact optimal solution while being tractable.
doi_str_mv 10.1016/j.ejor.2015.09.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1761254159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722171500870X</els_id><sourcerecordid>3937379711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3a752339322e8d0e3361e8779dfe1eb2786d873fd68fe293b6b5d4ce484cd0d23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF1615tEkKbobBF4y40XXIJLeSOjZjbjvgvzdlXLu6cDnf4fARcs1oxSiTt30FfUwVp6ypaFtRrk_IgmnFS6klPSULKpQqOWfqnFwg9pTmJGsWZPUCdigPNgU7OCjsYHc_GLCIXYFxSi4MH4UHFzDEoZgGD6nwAdO0H-dHCvh5Sc46u0O4-rtL8v5w_7Z-Kjevj8_r1aZ0dS3HUljVcCFawTloT0EIyUAr1foOGGy50tJrJTovdQe8FVu5bXztoNa189RzsSQ3x959it8T4Gj6PDDvRcOUZLypWdPmFD-mXIqICTqzT-HLph_DqJlVmd7MqsysytDWZFUZujtCkPcfAiSDLkD24UMCNxofw3_4Lz67chY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761254159</pqid></control><display><type>article</type><title>Mean-variance analysis of sourcing decision under disruption risk</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ray, Pritee ; Jenamani, Mamata</creator><creatorcontrib>Ray, Pritee ; Jenamani, Mamata</creatorcontrib><description>•Identification of situations with medium-probability and moderate-impact disruptive event.•Application of mean-variance (MV) approach to manage such disruptive events under newsvendor setting.•Studying the structural property of the problem and identifying existence of global maxima, even if the MV function is complex.•Perform comparative statics analysis to study the behavior of objective functions with respect to few parameters.•Develop an algorithm for MV objective that can handle higher dimensional problem. This study considers a mean-variance (MV) framework for managing disruption risk in a two-echelon supply chain with a risk-averse buyer and multiple unreliable suppliers under newsvendor (NV) setting. An MV objective function is designed to maximize the buyer's expected profit while minimizing its variance. Study of the structural property of the problem proves the existence of a global maxima and a set of efficient portfolios consisting of dominating mean-variance pairs. We demonstrate the effect of model parameters through comparative statics analysis. An algorithm is developed to overcome the computational complexity of the higher dimensional problem. Numerical studies on model behavior show that the proposed algorithm gives the exact optimal solution while being tractable.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2015.09.028</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Decision making models ; Demand uncertainty ; Disruption risk ; Mean-variance analysis ; Multi-sourcing ; Profit maximization ; Risk aversion ; Risk management ; Sourcing ; Studies ; Supply chain management</subject><ispartof>European journal of operational research, 2016-04, Vol.250 (2), p.679-689</ispartof><rights>2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS)</rights><rights>Copyright Elsevier Sequoia S.A. Apr 16, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3a752339322e8d0e3361e8779dfe1eb2786d873fd68fe293b6b5d4ce484cd0d23</citedby><cites>FETCH-LOGICAL-c446t-3a752339322e8d0e3361e8779dfe1eb2786d873fd68fe293b6b5d4ce484cd0d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2015.09.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Ray, Pritee</creatorcontrib><creatorcontrib>Jenamani, Mamata</creatorcontrib><title>Mean-variance analysis of sourcing decision under disruption risk</title><title>European journal of operational research</title><description>•Identification of situations with medium-probability and moderate-impact disruptive event.•Application of mean-variance (MV) approach to manage such disruptive events under newsvendor setting.•Studying the structural property of the problem and identifying existence of global maxima, even if the MV function is complex.•Perform comparative statics analysis to study the behavior of objective functions with respect to few parameters.•Develop an algorithm for MV objective that can handle higher dimensional problem. This study considers a mean-variance (MV) framework for managing disruption risk in a two-echelon supply chain with a risk-averse buyer and multiple unreliable suppliers under newsvendor (NV) setting. An MV objective function is designed to maximize the buyer's expected profit while minimizing its variance. Study of the structural property of the problem proves the existence of a global maxima and a set of efficient portfolios consisting of dominating mean-variance pairs. We demonstrate the effect of model parameters through comparative statics analysis. An algorithm is developed to overcome the computational complexity of the higher dimensional problem. Numerical studies on model behavior show that the proposed algorithm gives the exact optimal solution while being tractable.</description><subject>Decision making models</subject><subject>Demand uncertainty</subject><subject>Disruption risk</subject><subject>Mean-variance analysis</subject><subject>Multi-sourcing</subject><subject>Profit maximization</subject><subject>Risk aversion</subject><subject>Risk management</subject><subject>Sourcing</subject><subject>Studies</subject><subject>Supply chain management</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF1615tEkKbobBF4y40XXIJLeSOjZjbjvgvzdlXLu6cDnf4fARcs1oxSiTt30FfUwVp6ypaFtRrk_IgmnFS6klPSULKpQqOWfqnFwg9pTmJGsWZPUCdigPNgU7OCjsYHc_GLCIXYFxSi4MH4UHFzDEoZgGD6nwAdO0H-dHCvh5Sc46u0O4-rtL8v5w_7Z-Kjevj8_r1aZ0dS3HUljVcCFawTloT0EIyUAr1foOGGy50tJrJTovdQe8FVu5bXztoNa189RzsSQ3x959it8T4Gj6PDDvRcOUZLypWdPmFD-mXIqICTqzT-HLph_DqJlVmd7MqsysytDWZFUZujtCkPcfAiSDLkD24UMCNxofw3_4Lz67chY</recordid><startdate>20160416</startdate><enddate>20160416</enddate><creator>Ray, Pritee</creator><creator>Jenamani, Mamata</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160416</creationdate><title>Mean-variance analysis of sourcing decision under disruption risk</title><author>Ray, Pritee ; Jenamani, Mamata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3a752339322e8d0e3361e8779dfe1eb2786d873fd68fe293b6b5d4ce484cd0d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Decision making models</topic><topic>Demand uncertainty</topic><topic>Disruption risk</topic><topic>Mean-variance analysis</topic><topic>Multi-sourcing</topic><topic>Profit maximization</topic><topic>Risk aversion</topic><topic>Risk management</topic><topic>Sourcing</topic><topic>Studies</topic><topic>Supply chain management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Pritee</creatorcontrib><creatorcontrib>Jenamani, Mamata</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Pritee</au><au>Jenamani, Mamata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean-variance analysis of sourcing decision under disruption risk</atitle><jtitle>European journal of operational research</jtitle><date>2016-04-16</date><risdate>2016</risdate><volume>250</volume><issue>2</issue><spage>679</spage><epage>689</epage><pages>679-689</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>•Identification of situations with medium-probability and moderate-impact disruptive event.•Application of mean-variance (MV) approach to manage such disruptive events under newsvendor setting.•Studying the structural property of the problem and identifying existence of global maxima, even if the MV function is complex.•Perform comparative statics analysis to study the behavior of objective functions with respect to few parameters.•Develop an algorithm for MV objective that can handle higher dimensional problem. This study considers a mean-variance (MV) framework for managing disruption risk in a two-echelon supply chain with a risk-averse buyer and multiple unreliable suppliers under newsvendor (NV) setting. An MV objective function is designed to maximize the buyer's expected profit while minimizing its variance. Study of the structural property of the problem proves the existence of a global maxima and a set of efficient portfolios consisting of dominating mean-variance pairs. We demonstrate the effect of model parameters through comparative statics analysis. An algorithm is developed to overcome the computational complexity of the higher dimensional problem. Numerical studies on model behavior show that the proposed algorithm gives the exact optimal solution while being tractable.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2015.09.028</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2016-04, Vol.250 (2), p.679-689
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_1761254159
source ScienceDirect Journals (5 years ago - present)
subjects Decision making models
Demand uncertainty
Disruption risk
Mean-variance analysis
Multi-sourcing
Profit maximization
Risk aversion
Risk management
Sourcing
Studies
Supply chain management
title Mean-variance analysis of sourcing decision under disruption risk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean-variance%20analysis%20of%20sourcing%20decision%20under%20disruption%20risk&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Ray,%20Pritee&rft.date=2016-04-16&rft.volume=250&rft.issue=2&rft.spage=679&rft.epage=689&rft.pages=679-689&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2015.09.028&rft_dat=%3Cproquest_cross%3E3937379711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761254159&rft_id=info:pmid/&rft_els_id=S037722171500870X&rfr_iscdi=true