Prevention of Potential-Induced Degradation With Thin Ionomer Film

Significant power loss has been observed in photovoltaic (PV) modules resulting from high voltage bias experienced in the field. This type of failure has been called potential-induced degradation (PID). Encapsulant materials provide protection and electrical isolation of the solar components in PV m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2015-01, Vol.5 (1), p.219-223
Hauptverfasser: Kapur, Jane, Stika, Katherine M., Westphal, Craig S., Norwood, Jennifer L., Hamzavytehrany, Babak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 1
container_start_page 219
container_title IEEE journal of photovoltaics
container_volume 5
creator Kapur, Jane
Stika, Katherine M.
Westphal, Craig S.
Norwood, Jennifer L.
Hamzavytehrany, Babak
description Significant power loss has been observed in photovoltaic (PV) modules resulting from high voltage bias experienced in the field. This type of failure has been called potential-induced degradation (PID). Encapsulant materials provide protection and electrical isolation of the solar components in PV modules. Several researchers have shown that the type of encapsulant can directly affect the severity of the PID. Ionomers, in particular, were amongst the first encapsulants identified as having the ability to prevent this degradation mechanism. In this study, we introduce an ionomer/EVA bilayer encapsulant to the module to determine the effect of ionomer on PID and sodium ion migration in mini- modules. We determined that the encapsulant's volume resistivity is temperature independent with the presence of ionomer. Results confirm that the module's volume resistivity at elevated temperature inversely correlates with leakage current and that ion enrichment at the cell/encapsulant interface correlates with power degradation of a PV module. The rate of sodium ion migration to the cell was also investigated. An analytical method was refined for this application using laser ablation and mass spectrometry to observe the sodium migration within the module. Sodium ion profiles were obtained by elemental mapping of the encapsulant and solar cell cross section after the module had been exposed to a simulated PID test. Results show that sodium ion accumulation at the encapsulant/solar cell region increases linearly with PID testing time when only EVA encapsulant is used and is significantly different when an ionomer/EVA encapsulant is used in the module.
doi_str_mv 10.1109/JPHOTOV.2014.2365465
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1759485725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6963261</ieee_id><sourcerecordid>3931975551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-274a5c0d40acae193f7f4a8075b45d916b76efd093ef6bfe55c079a45db412903</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiQT5BXrYxPNip5_0qCiCIYED6rHp7k5lCWyxu2viv3cRdC4zTZ93JnkIuQE6BKDm7mU5XawWb0NGQQwZV1IoeUZ6DKRKuaD8_G_mI7gkg7re0K4UlUqJHnlYRvzCqilDlQSfLENzeLhtOquKNsciecSP6Ar3C7yXzTpZrcsqmYUq7DAmk3K7uyIX3m1rHJx6n7xOnlbjaTpfPM_G9_M0FyCblGnhZE4LQV3uEAz32gs3olpmQhYGVKYV-oIajl5lHmUHa-O6v0wAM5T3ye1x7z6Gzxbrxm5CG6vupAUtjRhJzWRHiSOVx1DXEb3dx3Ln4rcFag_C7EmYPQizJ2Fd7PoYKxHxP6KM4kwB_wGusGat</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759485725</pqid></control><display><type>article</type><title>Prevention of Potential-Induced Degradation With Thin Ionomer Film</title><source>IEEE Electronic Library (IEL)</source><creator>Kapur, Jane ; Stika, Katherine M. ; Westphal, Craig S. ; Norwood, Jennifer L. ; Hamzavytehrany, Babak</creator><creatorcontrib>Kapur, Jane ; Stika, Katherine M. ; Westphal, Craig S. ; Norwood, Jennifer L. ; Hamzavytehrany, Babak</creatorcontrib><description>Significant power loss has been observed in photovoltaic (PV) modules resulting from high voltage bias experienced in the field. This type of failure has been called potential-induced degradation (PID). Encapsulant materials provide protection and electrical isolation of the solar components in PV modules. Several researchers have shown that the type of encapsulant can directly affect the severity of the PID. Ionomers, in particular, were amongst the first encapsulants identified as having the ability to prevent this degradation mechanism. In this study, we introduce an ionomer/EVA bilayer encapsulant to the module to determine the effect of ionomer on PID and sodium ion migration in mini- modules. We determined that the encapsulant's volume resistivity is temperature independent with the presence of ionomer. Results confirm that the module's volume resistivity at elevated temperature inversely correlates with leakage current and that ion enrichment at the cell/encapsulant interface correlates with power degradation of a PV module. The rate of sodium ion migration to the cell was also investigated. An analytical method was refined for this application using laser ablation and mass spectrometry to observe the sodium migration within the module. Sodium ion profiles were obtained by elemental mapping of the encapsulant and solar cell cross section after the module had been exposed to a simulated PID test. Results show that sodium ion accumulation at the encapsulant/solar cell region increases linearly with PID testing time when only EVA encapsulant is used and is significantly different when an ionomer/EVA encapsulant is used in the module.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2014.2365465</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Conductivity ; Degradation ; Encapsulant ; ion migration ; ionomer ; laser ablation ; mass spectrometry ; Migration ; Photovoltaic cells ; Photovoltaic systems ; potential-induced degradation (PID) ; Sodium ; Solar energy ; Studies ; Temperature measurement ; volume resistivity</subject><ispartof>IEEE journal of photovoltaics, 2015-01, Vol.5 (1), p.219-223</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-274a5c0d40acae193f7f4a8075b45d916b76efd093ef6bfe55c079a45db412903</citedby><cites>FETCH-LOGICAL-c415t-274a5c0d40acae193f7f4a8075b45d916b76efd093ef6bfe55c079a45db412903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6963261$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Kapur, Jane</creatorcontrib><creatorcontrib>Stika, Katherine M.</creatorcontrib><creatorcontrib>Westphal, Craig S.</creatorcontrib><creatorcontrib>Norwood, Jennifer L.</creatorcontrib><creatorcontrib>Hamzavytehrany, Babak</creatorcontrib><title>Prevention of Potential-Induced Degradation With Thin Ionomer Film</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Significant power loss has been observed in photovoltaic (PV) modules resulting from high voltage bias experienced in the field. This type of failure has been called potential-induced degradation (PID). Encapsulant materials provide protection and electrical isolation of the solar components in PV modules. Several researchers have shown that the type of encapsulant can directly affect the severity of the PID. Ionomers, in particular, were amongst the first encapsulants identified as having the ability to prevent this degradation mechanism. In this study, we introduce an ionomer/EVA bilayer encapsulant to the module to determine the effect of ionomer on PID and sodium ion migration in mini- modules. We determined that the encapsulant's volume resistivity is temperature independent with the presence of ionomer. Results confirm that the module's volume resistivity at elevated temperature inversely correlates with leakage current and that ion enrichment at the cell/encapsulant interface correlates with power degradation of a PV module. The rate of sodium ion migration to the cell was also investigated. An analytical method was refined for this application using laser ablation and mass spectrometry to observe the sodium migration within the module. Sodium ion profiles were obtained by elemental mapping of the encapsulant and solar cell cross section after the module had been exposed to a simulated PID test. Results show that sodium ion accumulation at the encapsulant/solar cell region increases linearly with PID testing time when only EVA encapsulant is used and is significantly different when an ionomer/EVA encapsulant is used in the module.</description><subject>Conductivity</subject><subject>Degradation</subject><subject>Encapsulant</subject><subject>ion migration</subject><subject>ionomer</subject><subject>laser ablation</subject><subject>mass spectrometry</subject><subject>Migration</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>potential-induced degradation (PID)</subject><subject>Sodium</subject><subject>Solar energy</subject><subject>Studies</subject><subject>Temperature measurement</subject><subject>volume resistivity</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiQT5BXrYxPNip5_0qCiCIYED6rHp7k5lCWyxu2viv3cRdC4zTZ93JnkIuQE6BKDm7mU5XawWb0NGQQwZV1IoeUZ6DKRKuaD8_G_mI7gkg7re0K4UlUqJHnlYRvzCqilDlQSfLENzeLhtOquKNsciecSP6Ar3C7yXzTpZrcsqmYUq7DAmk3K7uyIX3m1rHJx6n7xOnlbjaTpfPM_G9_M0FyCblGnhZE4LQV3uEAz32gs3olpmQhYGVKYV-oIajl5lHmUHa-O6v0wAM5T3ye1x7z6Gzxbrxm5CG6vupAUtjRhJzWRHiSOVx1DXEb3dx3Ln4rcFag_C7EmYPQizJ2Fd7PoYKxHxP6KM4kwB_wGusGat</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Kapur, Jane</creator><creator>Stika, Katherine M.</creator><creator>Westphal, Craig S.</creator><creator>Norwood, Jennifer L.</creator><creator>Hamzavytehrany, Babak</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Prevention of Potential-Induced Degradation With Thin Ionomer Film</title><author>Kapur, Jane ; Stika, Katherine M. ; Westphal, Craig S. ; Norwood, Jennifer L. ; Hamzavytehrany, Babak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-274a5c0d40acae193f7f4a8075b45d916b76efd093ef6bfe55c079a45db412903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conductivity</topic><topic>Degradation</topic><topic>Encapsulant</topic><topic>ion migration</topic><topic>ionomer</topic><topic>laser ablation</topic><topic>mass spectrometry</topic><topic>Migration</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>potential-induced degradation (PID)</topic><topic>Sodium</topic><topic>Solar energy</topic><topic>Studies</topic><topic>Temperature measurement</topic><topic>volume resistivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapur, Jane</creatorcontrib><creatorcontrib>Stika, Katherine M.</creatorcontrib><creatorcontrib>Westphal, Craig S.</creatorcontrib><creatorcontrib>Norwood, Jennifer L.</creatorcontrib><creatorcontrib>Hamzavytehrany, Babak</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapur, Jane</au><au>Stika, Katherine M.</au><au>Westphal, Craig S.</au><au>Norwood, Jennifer L.</au><au>Hamzavytehrany, Babak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevention of Potential-Induced Degradation With Thin Ionomer Film</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>219</spage><epage>223</epage><pages>219-223</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Significant power loss has been observed in photovoltaic (PV) modules resulting from high voltage bias experienced in the field. This type of failure has been called potential-induced degradation (PID). Encapsulant materials provide protection and electrical isolation of the solar components in PV modules. Several researchers have shown that the type of encapsulant can directly affect the severity of the PID. Ionomers, in particular, were amongst the first encapsulants identified as having the ability to prevent this degradation mechanism. In this study, we introduce an ionomer/EVA bilayer encapsulant to the module to determine the effect of ionomer on PID and sodium ion migration in mini- modules. We determined that the encapsulant's volume resistivity is temperature independent with the presence of ionomer. Results confirm that the module's volume resistivity at elevated temperature inversely correlates with leakage current and that ion enrichment at the cell/encapsulant interface correlates with power degradation of a PV module. The rate of sodium ion migration to the cell was also investigated. An analytical method was refined for this application using laser ablation and mass spectrometry to observe the sodium migration within the module. Sodium ion profiles were obtained by elemental mapping of the encapsulant and solar cell cross section after the module had been exposed to a simulated PID test. Results show that sodium ion accumulation at the encapsulant/solar cell region increases linearly with PID testing time when only EVA encapsulant is used and is significantly different when an ionomer/EVA encapsulant is used in the module.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2014.2365465</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2015-01, Vol.5 (1), p.219-223
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_1759485725
source IEEE Electronic Library (IEL)
subjects Conductivity
Degradation
Encapsulant
ion migration
ionomer
laser ablation
mass spectrometry
Migration
Photovoltaic cells
Photovoltaic systems
potential-induced degradation (PID)
Sodium
Solar energy
Studies
Temperature measurement
volume resistivity
title Prevention of Potential-Induced Degradation With Thin Ionomer Film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevention%20of%20Potential-Induced%20Degradation%20With%20Thin%20Ionomer%20Film&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Kapur,%20Jane&rft.date=2015-01-01&rft.volume=5&rft.issue=1&rft.spage=219&rft.epage=223&rft.pages=219-223&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2014.2365465&rft_dat=%3Cproquest_ieee_%3E3931975551%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759485725&rft_id=info:pmid/&rft_ieee_id=6963261&rfr_iscdi=true