Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells
Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2015-01, Vol.5 (1), p.61-69 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | IEEE journal of photovoltaics |
container_volume | 5 |
creator | Kosten, Emily D. Newman, Bonna K. Lloyd, John V. Polman, Albert Atwater, Harry A. |
description | Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure. |
doi_str_mv | 10.1109/JPHOTOV.2014.2360566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1759485657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6933915</ieee_id><sourcerecordid>3931975241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEhX0CeBgwTnFP3HicKuqQosqpYLC1XKcTesqjUvsIvH2uKSwl53DN7ujiaJbgkeE4PzhZTkrVsXHiGKSjChLMU_Ts2hACU9jlmB2_qeZIJfR0LktDvOLJYOoWJid8aZdo4VZbzyaOq32gMbtugFkWvRmGqNti5Yb6-2Xbbwy2j2ieQWqQaqt0GsQxnmj0QSaxl1HF7VqHAxP-yp6f5quJrN4UTzPJ-NFrDkWPq6zOskUA0GVxkKxTBMNAniFoSzzitAA4EoEpiQKuM5ZLVJBREJITUuas6vorr9rw2_ptPGgNyFoC9pLwkRGBQ3QfQ_tO_t5AOfl1h66NuSSJON5InjKs0AlPaU761wHtdx3Zqe6b0mwPFYsTxXLY8XyVHGw3fQ2AwD_ljRnLCec_QBjGXcN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759485657</pqid></control><display><type>article</type><title>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Kosten, Emily D. ; Newman, Bonna K. ; Lloyd, John V. ; Polman, Albert ; Atwater, Harry A.</creator><creatorcontrib>Kosten, Emily D. ; Newman, Bonna K. ; Lloyd, John V. ; Polman, Albert ; Atwater, Harry A. ; Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2014.2360566</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption ; Heterojunctions ; Limiting ; Nanostructures ; Photovoltaic cells ; Photovoltaic systems ; Silicon ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>IEEE journal of photovoltaics, 2015-01, Vol.5 (1), p.61-69</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</citedby><cites>FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6933915$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6933915$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1387282$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>Newman, Bonna K.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Polman, Albert</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.</description><subject>Absorption</subject><subject>Heterojunctions</subject><subject>Limiting</subject><subject>Nanostructures</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Silicon</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhCMEEhX0CeBgwTnFP3HicKuqQosqpYLC1XKcTesqjUvsIvH2uKSwl53DN7ujiaJbgkeE4PzhZTkrVsXHiGKSjChLMU_Ts2hACU9jlmB2_qeZIJfR0LktDvOLJYOoWJid8aZdo4VZbzyaOq32gMbtugFkWvRmGqNti5Yb6-2Xbbwy2j2ieQWqQaqt0GsQxnmj0QSaxl1HF7VqHAxP-yp6f5quJrN4UTzPJ-NFrDkWPq6zOskUA0GVxkKxTBMNAniFoSzzitAA4EoEpiQKuM5ZLVJBREJITUuas6vorr9rw2_ptPGgNyFoC9pLwkRGBQ3QfQ_tO_t5AOfl1h66NuSSJON5InjKs0AlPaU761wHtdx3Zqe6b0mwPFYsTxXLY8XyVHGw3fQ2AwD_ljRnLCec_QBjGXcN</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Kosten, Emily D.</creator><creator>Newman, Bonna K.</creator><creator>Lloyd, John V.</creator><creator>Polman, Albert</creator><creator>Atwater, Harry A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</title><author>Kosten, Emily D. ; Newman, Bonna K. ; Lloyd, John V. ; Polman, Albert ; Atwater, Harry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption</topic><topic>Heterojunctions</topic><topic>Limiting</topic><topic>Nanostructures</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Silicon</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>Newman, Bonna K.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Polman, Albert</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kosten, Emily D.</au><au>Newman, Bonna K.</au><au>Lloyd, John V.</au><au>Polman, Albert</au><au>Atwater, Harry A.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2014.2360566</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2015-01, Vol.5 (1), p.61-69 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_proquest_journals_1759485657 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Heterojunctions Limiting Nanostructures Photovoltaic cells Photovoltaic systems Silicon solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) |
title | Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20Light%20Escape%20Angle%20in%20Silicon%20Photovoltaics:%20Ideal%20and%20Realistic%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Kosten,%20Emily%20D.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Light-Material%20Interactions%20in%20Energy%20Conversion%20(LMI)&rft.date=2015-01-01&rft.volume=5&rft.issue=1&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2014.2360566&rft_dat=%3Cproquest_RIE%3E3931975241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759485657&rft_id=info:pmid/&rft_ieee_id=6933915&rfr_iscdi=true |