Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells

Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2015-01, Vol.5 (1), p.61-69
Hauptverfasser: Kosten, Emily D., Newman, Bonna K., Lloyd, John V., Polman, Albert, Atwater, Harry A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 61
container_title IEEE journal of photovoltaics
container_volume 5
creator Kosten, Emily D.
Newman, Bonna K.
Lloyd, John V.
Polman, Albert
Atwater, Harry A.
description Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.
doi_str_mv 10.1109/JPHOTOV.2014.2360566
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1759485657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6933915</ieee_id><sourcerecordid>3931975241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEhX0CeBgwTnFP3HicKuqQosqpYLC1XKcTesqjUvsIvH2uKSwl53DN7ujiaJbgkeE4PzhZTkrVsXHiGKSjChLMU_Ts2hACU9jlmB2_qeZIJfR0LktDvOLJYOoWJid8aZdo4VZbzyaOq32gMbtugFkWvRmGqNti5Yb6-2Xbbwy2j2ieQWqQaqt0GsQxnmj0QSaxl1HF7VqHAxP-yp6f5quJrN4UTzPJ-NFrDkWPq6zOskUA0GVxkKxTBMNAniFoSzzitAA4EoEpiQKuM5ZLVJBREJITUuas6vorr9rw2_ptPGgNyFoC9pLwkRGBQ3QfQ_tO_t5AOfl1h66NuSSJON5InjKs0AlPaU761wHtdx3Zqe6b0mwPFYsTxXLY8XyVHGw3fQ2AwD_ljRnLCec_QBjGXcN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759485657</pqid></control><display><type>article</type><title>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Kosten, Emily D. ; Newman, Bonna K. ; Lloyd, John V. ; Polman, Albert ; Atwater, Harry A.</creator><creatorcontrib>Kosten, Emily D. ; Newman, Bonna K. ; Lloyd, John V. ; Polman, Albert ; Atwater, Harry A. ; Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2014.2360566</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption ; Heterojunctions ; Limiting ; Nanostructures ; Photovoltaic cells ; Photovoltaic systems ; Silicon ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>IEEE journal of photovoltaics, 2015-01, Vol.5 (1), p.61-69</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</citedby><cites>FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6933915$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6933915$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1387282$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>Newman, Bonna K.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Polman, Albert</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.</description><subject>Absorption</subject><subject>Heterojunctions</subject><subject>Limiting</subject><subject>Nanostructures</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Silicon</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhCMEEhX0CeBgwTnFP3HicKuqQosqpYLC1XKcTesqjUvsIvH2uKSwl53DN7ujiaJbgkeE4PzhZTkrVsXHiGKSjChLMU_Ts2hACU9jlmB2_qeZIJfR0LktDvOLJYOoWJid8aZdo4VZbzyaOq32gMbtugFkWvRmGqNti5Yb6-2Xbbwy2j2ieQWqQaqt0GsQxnmj0QSaxl1HF7VqHAxP-yp6f5quJrN4UTzPJ-NFrDkWPq6zOskUA0GVxkKxTBMNAniFoSzzitAA4EoEpiQKuM5ZLVJBREJITUuas6vorr9rw2_ptPGgNyFoC9pLwkRGBQ3QfQ_tO_t5AOfl1h66NuSSJON5InjKs0AlPaU761wHtdx3Zqe6b0mwPFYsTxXLY8XyVHGw3fQ2AwD_ljRnLCec_QBjGXcN</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Kosten, Emily D.</creator><creator>Newman, Bonna K.</creator><creator>Lloyd, John V.</creator><creator>Polman, Albert</creator><creator>Atwater, Harry A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</title><author>Kosten, Emily D. ; Newman, Bonna K. ; Lloyd, John V. ; Polman, Albert ; Atwater, Harry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-f7f47a3e82ac08a37c1ce8e5d0ebb9d12f7f0d847ab1ae5c93f86818411f2b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption</topic><topic>Heterojunctions</topic><topic>Limiting</topic><topic>Nanostructures</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Silicon</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosten, Emily D.</creatorcontrib><creatorcontrib>Newman, Bonna K.</creatorcontrib><creatorcontrib>Lloyd, John V.</creatorcontrib><creatorcontrib>Polman, Albert</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kosten, Emily D.</au><au>Newman, Bonna K.</au><au>Lloyd, John V.</au><au>Polman, Albert</au><au>Atwater, Harry A.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Restricting the light escape angle within a solar cell significantly enhances light trapping, resulting in potentially higher efficiency in thinner cells. Using an improved detailed balance model for silicon and neglecting diffuse light, we calculate an efficiency gain of 3% abs for an ideal Si cell of 3-μm thickness and the escape angle restricted to 2.767° under AM1.5 direct illumination. Applying the model to current high-efficiency cell technologies, we find that a heterojunction-type device with better surface and contact passivation is better suited to escape angle restriction than a homojunction type device. In these more realistic cell models, we also find that there is little benefit gained by restricting the escape angle to less than 10°. The benefits of combining moderate escape angle restriction with low to moderate concentration offers further efficiency gains. Finally, we consider two potential structures for escape angle restriction: a narrowband graded index optical multilayer and a broadband ray optical structure. The broadband structure, which provides greater angle restriction, allows for higher efficiencies and much thinner cells than the narrowband structure.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2014.2360566</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2015-01, Vol.5 (1), p.61-69
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_1759485657
source IEEE Electronic Library (IEL)
subjects Absorption
Heterojunctions
Limiting
Nanostructures
Photovoltaic cells
Photovoltaic systems
Silicon
solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)
title Limiting Light Escape Angle in Silicon Photovoltaics: Ideal and Realistic Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20Light%20Escape%20Angle%20in%20Silicon%20Photovoltaics:%20Ideal%20and%20Realistic%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Kosten,%20Emily%20D.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Light-Material%20Interactions%20in%20Energy%20Conversion%20(LMI)&rft.date=2015-01-01&rft.volume=5&rft.issue=1&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2014.2360566&rft_dat=%3Cproquest_RIE%3E3931975241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759485657&rft_id=info:pmid/&rft_ieee_id=6933915&rfr_iscdi=true