Aggressive Resource Provisioning for Ensuring QoS in Virtualized Environments

Elasticity has now become the elemental feature of cloud computing as it enables the ability to dynamically add or remove virtual machine instances when workload changes. However, effective virtualized resource management is still one of the most challenging tasks. When the workload of a service inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2015-04, Vol.3 (2), p.119-131
Hauptverfasser: Liu, Jinzhao, Zhang, Yaoxue, Zhou, Yuezhi, Zhang, Di, Liu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 2
container_start_page 119
container_title IEEE transactions on cloud computing
container_volume 3
creator Liu, Jinzhao
Zhang, Yaoxue
Zhou, Yuezhi
Zhang, Di
Liu, Hao
description Elasticity has now become the elemental feature of cloud computing as it enables the ability to dynamically add or remove virtual machine instances when workload changes. However, effective virtualized resource management is still one of the most challenging tasks. When the workload of a service increases rapidly, existing approaches cannot respond to the growing performance requirement efficiently because of either inaccuracy of adaptation decisions or the slow process of adjustments, both of which may result in insufficient resource provisioning. As a consequence, the Quality of Service (QoS) of the hosted applications may degrade and the Service Level Objective (SLO) will be thus violated. In this paper, we introduce SPRNT, a novel resource management framework, to ensure high-level QoS in the cloud computing system. SPRNT utilizes an aggressive resource provisioning strategy which encourages SPRNT to substantially increase the resource allocation in each adaptation cycle when workload increases. This strategy first provisions resources which are possibly more than actual demands, and then reduces the over-provisioned resources if needed. By applying the aggressive strategy, SPRNT can satisfy the increasing performance requirement in the first place so that the QoS can be kept at a high level. The experimental results show that SPRNT achieves up to 7.7× speedup in adaptation time, compared with existing efforts. By enabling quick adaptation, SPRNT limits the SLO violation rate up to 1.3 percent even when dealing with rapidly increasing workload.
doi_str_mv 10.1109/TCC.2014.2353045
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1759349285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6888495</ieee_id><sourcerecordid>3931742801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d496dd5d57892145a73b04c7443ddbc67ff8dab5ce1c6bdf913d2d819bfb9a6c3</originalsourceid><addsrcrecordid>eNpNkMtLAzEQxoMoWLR3wcuC562ZzWOTY1nqAyq-qtewm2RLSpvUZLegf71bWsS5zAzzfTPDD6ErwBMALG8XVTUpMNBJQRjBlJ2gUQFc5CVwOP1Xn6NxSis8hGAgQY7Q03S5jDYlt7PZm02hj9pmLzHsXHLBO7_M2hCzmU993Dev4T1zPvt0sevrtfuxZpjtXAx-Y32XLtFZW6-THR_zBfq4my2qh3z-fP9YTee5LiR0uaGSG8MMK4UsgLK6JA2muqSUGNNoXratMHXDtAXNG9NKIKYwAmTTNrLmmlygm8PebQxfvU2dWg2f--GkgpJJQmUh2KDCB5WOIaVoW7WNblPHbwVY7bmpgZvac1NHboPl-mBx1to_ORdCUMnIL9Rkafw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759349285</pqid></control><display><type>article</type><title>Aggressive Resource Provisioning for Ensuring QoS in Virtualized Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jinzhao ; Zhang, Yaoxue ; Zhou, Yuezhi ; Zhang, Di ; Liu, Hao</creator><creatorcontrib>Liu, Jinzhao ; Zhang, Yaoxue ; Zhou, Yuezhi ; Zhang, Di ; Liu, Hao</creatorcontrib><description>Elasticity has now become the elemental feature of cloud computing as it enables the ability to dynamically add or remove virtual machine instances when workload changes. However, effective virtualized resource management is still one of the most challenging tasks. When the workload of a service increases rapidly, existing approaches cannot respond to the growing performance requirement efficiently because of either inaccuracy of adaptation decisions or the slow process of adjustments, both of which may result in insufficient resource provisioning. As a consequence, the Quality of Service (QoS) of the hosted applications may degrade and the Service Level Objective (SLO) will be thus violated. In this paper, we introduce SPRNT, a novel resource management framework, to ensure high-level QoS in the cloud computing system. SPRNT utilizes an aggressive resource provisioning strategy which encourages SPRNT to substantially increase the resource allocation in each adaptation cycle when workload increases. This strategy first provisions resources which are possibly more than actual demands, and then reduces the over-provisioned resources if needed. By applying the aggressive strategy, SPRNT can satisfy the increasing performance requirement in the first place so that the QoS can be kept at a high level. The experimental results show that SPRNT achieves up to 7.7× speedup in adaptation time, compared with existing efforts. By enabling quick adaptation, SPRNT limits the SLO violation rate up to 1.3 percent even when dealing with rapidly increasing workload.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2014.2353045</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE Computer Society</publisher><subject>Cloud computing ; Encyclopedias ; Engines ; Measurement ; Quality of service ; Resource management ; Workloads</subject><ispartof>IEEE transactions on cloud computing, 2015-04, Vol.3 (2), p.119-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr-Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d496dd5d57892145a73b04c7443ddbc67ff8dab5ce1c6bdf913d2d819bfb9a6c3</citedby><cites>FETCH-LOGICAL-c291t-d496dd5d57892145a73b04c7443ddbc67ff8dab5ce1c6bdf913d2d819bfb9a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6888495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6888495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jinzhao</creatorcontrib><creatorcontrib>Zhang, Yaoxue</creatorcontrib><creatorcontrib>Zhou, Yuezhi</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Aggressive Resource Provisioning for Ensuring QoS in Virtualized Environments</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Elasticity has now become the elemental feature of cloud computing as it enables the ability to dynamically add or remove virtual machine instances when workload changes. However, effective virtualized resource management is still one of the most challenging tasks. When the workload of a service increases rapidly, existing approaches cannot respond to the growing performance requirement efficiently because of either inaccuracy of adaptation decisions or the slow process of adjustments, both of which may result in insufficient resource provisioning. As a consequence, the Quality of Service (QoS) of the hosted applications may degrade and the Service Level Objective (SLO) will be thus violated. In this paper, we introduce SPRNT, a novel resource management framework, to ensure high-level QoS in the cloud computing system. SPRNT utilizes an aggressive resource provisioning strategy which encourages SPRNT to substantially increase the resource allocation in each adaptation cycle when workload increases. This strategy first provisions resources which are possibly more than actual demands, and then reduces the over-provisioned resources if needed. By applying the aggressive strategy, SPRNT can satisfy the increasing performance requirement in the first place so that the QoS can be kept at a high level. The experimental results show that SPRNT achieves up to 7.7× speedup in adaptation time, compared with existing efforts. By enabling quick adaptation, SPRNT limits the SLO violation rate up to 1.3 percent even when dealing with rapidly increasing workload.</description><subject>Cloud computing</subject><subject>Encyclopedias</subject><subject>Engines</subject><subject>Measurement</subject><subject>Quality of service</subject><subject>Resource management</subject><subject>Workloads</subject><issn>2168-7161</issn><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtLAzEQxoMoWLR3wcuC562ZzWOTY1nqAyq-qtewm2RLSpvUZLegf71bWsS5zAzzfTPDD6ErwBMALG8XVTUpMNBJQRjBlJ2gUQFc5CVwOP1Xn6NxSis8hGAgQY7Q03S5jDYlt7PZm02hj9pmLzHsXHLBO7_M2hCzmU993Dev4T1zPvt0sevrtfuxZpjtXAx-Y32XLtFZW6-THR_zBfq4my2qh3z-fP9YTee5LiR0uaGSG8MMK4UsgLK6JA2muqSUGNNoXratMHXDtAXNG9NKIKYwAmTTNrLmmlygm8PebQxfvU2dWg2f--GkgpJJQmUh2KDCB5WOIaVoW7WNblPHbwVY7bmpgZvac1NHboPl-mBx1to_ORdCUMnIL9Rkafw</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Liu, Jinzhao</creator><creator>Zhang, Yaoxue</creator><creator>Zhou, Yuezhi</creator><creator>Zhang, Di</creator><creator>Liu, Hao</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>Aggressive Resource Provisioning for Ensuring QoS in Virtualized Environments</title><author>Liu, Jinzhao ; Zhang, Yaoxue ; Zhou, Yuezhi ; Zhang, Di ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d496dd5d57892145a73b04c7443ddbc67ff8dab5ce1c6bdf913d2d819bfb9a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cloud computing</topic><topic>Encyclopedias</topic><topic>Engines</topic><topic>Measurement</topic><topic>Quality of service</topic><topic>Resource management</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinzhao</creatorcontrib><creatorcontrib>Zhang, Yaoxue</creatorcontrib><creatorcontrib>Zhou, Yuezhi</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jinzhao</au><au>Zhang, Yaoxue</au><au>Zhou, Yuezhi</au><au>Zhang, Di</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggressive Resource Provisioning for Ensuring QoS in Virtualized Environments</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2015-04</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>119</spage><epage>131</epage><pages>119-131</pages><issn>2168-7161</issn><eissn>2168-7161</eissn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Elasticity has now become the elemental feature of cloud computing as it enables the ability to dynamically add or remove virtual machine instances when workload changes. However, effective virtualized resource management is still one of the most challenging tasks. When the workload of a service increases rapidly, existing approaches cannot respond to the growing performance requirement efficiently because of either inaccuracy of adaptation decisions or the slow process of adjustments, both of which may result in insufficient resource provisioning. As a consequence, the Quality of Service (QoS) of the hosted applications may degrade and the Service Level Objective (SLO) will be thus violated. In this paper, we introduce SPRNT, a novel resource management framework, to ensure high-level QoS in the cloud computing system. SPRNT utilizes an aggressive resource provisioning strategy which encourages SPRNT to substantially increase the resource allocation in each adaptation cycle when workload increases. This strategy first provisions resources which are possibly more than actual demands, and then reduces the over-provisioned resources if needed. By applying the aggressive strategy, SPRNT can satisfy the increasing performance requirement in the first place so that the QoS can be kept at a high level. The experimental results show that SPRNT achieves up to 7.7× speedup in adaptation time, compared with existing efforts. By enabling quick adaptation, SPRNT limits the SLO violation rate up to 1.3 percent even when dealing with rapidly increasing workload.</abstract><cop>Piscataway</cop><pub>IEEE Computer Society</pub><doi>10.1109/TCC.2014.2353045</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2015-04, Vol.3 (2), p.119-131
issn 2168-7161
2168-7161
2372-0018
language eng
recordid cdi_proquest_journals_1759349285
source IEEE Electronic Library (IEL)
subjects Cloud computing
Encyclopedias
Engines
Measurement
Quality of service
Resource management
Workloads
title Aggressive Resource Provisioning for Ensuring QoS in Virtualized Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggressive%20Resource%20Provisioning%20for%20Ensuring%20QoS%20in%20Virtualized%20Environments&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Liu,%20Jinzhao&rft.date=2015-04&rft.volume=3&rft.issue=2&rft.spage=119&rft.epage=131&rft.pages=119-131&rft.issn=2168-7161&rft.eissn=2168-7161&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2014.2353045&rft_dat=%3Cproquest_RIE%3E3931742801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759349285&rft_id=info:pmid/&rft_ieee_id=6888495&rfr_iscdi=true