Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter

By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2014-12, Vol.1 (4), p.370-379
Hauptverfasser: Manandhar, Kebina, Xiaojun Cao, Fei Hu, Yao Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 4
container_start_page 370
container_title IEEE transactions on control of network systems
container_volume 1
creator Manandhar, Kebina
Xiaojun Cao
Fei Hu
Yao Liu
description By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.
doi_str_mv 10.1109/TCNS.2014.2357531
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1759348708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6897944</ieee_id><sourcerecordid>3931747001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</originalsourceid><addsrcrecordid>eNpNkE9PwjAYhxujiQT5AMZLE8_D_l27IwFBItEDcG5K15Hh6LDtDn57u4wYT2_f9vm9ffMA8IjRFGNUvOzmH9spQZhNCeWCU3wDRoQSnnEp0O2_8z2YhHBCCGHCU09H4Liw0ZpYtw62FVzqrokBalfCWYzafAW4dqbpytod02MTLFzoqNPl6RoaMFg7uD1rH-HK1yXch55_181ZO7ism2j9A7ir-vzkWsdgv3zdzd-yzedqPZ9tMsOQiJktkKT6IBmjBBGjUZ4fqEZWM4MqYjUuBReHgupKGmIIoYwxW0oupCa5KUo6Bs_D3Itvvzsbojq1nXfpS4UFLyhLFmSi8EAZ34bgbaUuvk77_yiMVK9U9UpVr1RdlabM05CprbV_fC4LUaRtfwEzl3Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759348708</pqid></control><display><type>article</type><title>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Manandhar, Kebina ; Xiaojun Cao ; Fei Hu ; Yao Liu</creator><creatorcontrib>Manandhar, Kebina ; Xiaojun Cao ; Fei Hu ; Yao Liu</creatorcontrib><description>By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2014.2357531</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Detectors ; Kalman filters ; Mathematical model ; Mathematical models ; Network security ; Security ; Smart grids</subject><ispartof>IEEE transactions on control of network systems, 2014-12, Vol.1 (4), p.370-379</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</citedby><cites>FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6897944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6897944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manandhar, Kebina</creatorcontrib><creatorcontrib>Xiaojun Cao</creatorcontrib><creatorcontrib>Fei Hu</creatorcontrib><creatorcontrib>Yao Liu</creatorcontrib><title>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.</description><subject>Detectors</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Network security</subject><subject>Security</subject><subject>Smart grids</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwjAYhxujiQT5AMZLE8_D_l27IwFBItEDcG5K15Hh6LDtDn57u4wYT2_f9vm9ffMA8IjRFGNUvOzmH9spQZhNCeWCU3wDRoQSnnEp0O2_8z2YhHBCCGHCU09H4Liw0ZpYtw62FVzqrokBalfCWYzafAW4dqbpytod02MTLFzoqNPl6RoaMFg7uD1rH-HK1yXch55_181ZO7ism2j9A7ir-vzkWsdgv3zdzd-yzedqPZ9tMsOQiJktkKT6IBmjBBGjUZ4fqEZWM4MqYjUuBReHgupKGmIIoYwxW0oupCa5KUo6Bs_D3Itvvzsbojq1nXfpS4UFLyhLFmSi8EAZ34bgbaUuvk77_yiMVK9U9UpVr1RdlabM05CprbV_fC4LUaRtfwEzl3Ew</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Manandhar, Kebina</creator><creator>Xiaojun Cao</creator><creator>Fei Hu</creator><creator>Yao Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</title><author>Manandhar, Kebina ; Xiaojun Cao ; Fei Hu ; Yao Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Detectors</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Network security</topic><topic>Security</topic><topic>Smart grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manandhar, Kebina</creatorcontrib><creatorcontrib>Xiaojun Cao</creatorcontrib><creatorcontrib>Fei Hu</creatorcontrib><creatorcontrib>Yao Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manandhar, Kebina</au><au>Xiaojun Cao</au><au>Fei Hu</au><au>Yao Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>1</volume><issue>4</issue><spage>370</spage><epage>379</epage><pages>370-379</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2014.2357531</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2014-12, Vol.1 (4), p.370-379
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_proquest_journals_1759348708
source IEEE Electronic Library (IEL)
subjects Detectors
Kalman filters
Mathematical model
Mathematical models
Network security
Security
Smart grids
title Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Faults%20and%20Attacks%20Including%20False%20Data%20Injection%20Attack%20in%20Smart%20Grid%20Using%20Kalman%20Filter&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Manandhar,%20Kebina&rft.date=2014-12-01&rft.volume=1&rft.issue=4&rft.spage=370&rft.epage=379&rft.pages=370-379&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2014.2357531&rft_dat=%3Cproquest_RIE%3E3931747001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759348708&rft_id=info:pmid/&rft_ieee_id=6897944&rfr_iscdi=true