Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter
By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical mo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2014-12, Vol.1 (4), p.370-379 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 4 |
container_start_page | 370 |
container_title | IEEE transactions on control of network systems |
container_volume | 1 |
creator | Manandhar, Kebina Xiaojun Cao Fei Hu Yao Liu |
description | By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack. |
doi_str_mv | 10.1109/TCNS.2014.2357531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1759348708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6897944</ieee_id><sourcerecordid>3931747001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</originalsourceid><addsrcrecordid>eNpNkE9PwjAYhxujiQT5AMZLE8_D_l27IwFBItEDcG5K15Hh6LDtDn57u4wYT2_f9vm9ffMA8IjRFGNUvOzmH9spQZhNCeWCU3wDRoQSnnEp0O2_8z2YhHBCCGHCU09H4Liw0ZpYtw62FVzqrokBalfCWYzafAW4dqbpytod02MTLFzoqNPl6RoaMFg7uD1rH-HK1yXch55_181ZO7ism2j9A7ir-vzkWsdgv3zdzd-yzedqPZ9tMsOQiJktkKT6IBmjBBGjUZ4fqEZWM4MqYjUuBReHgupKGmIIoYwxW0oupCa5KUo6Bs_D3Itvvzsbojq1nXfpS4UFLyhLFmSi8EAZ34bgbaUuvk77_yiMVK9U9UpVr1RdlabM05CprbV_fC4LUaRtfwEzl3Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759348708</pqid></control><display><type>article</type><title>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Manandhar, Kebina ; Xiaojun Cao ; Fei Hu ; Yao Liu</creator><creatorcontrib>Manandhar, Kebina ; Xiaojun Cao ; Fei Hu ; Yao Liu</creatorcontrib><description>By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2014.2357531</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Detectors ; Kalman filters ; Mathematical model ; Mathematical models ; Network security ; Security ; Smart grids</subject><ispartof>IEEE transactions on control of network systems, 2014-12, Vol.1 (4), p.370-379</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</citedby><cites>FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6897944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6897944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manandhar, Kebina</creatorcontrib><creatorcontrib>Xiaojun Cao</creatorcontrib><creatorcontrib>Fei Hu</creatorcontrib><creatorcontrib>Yao Liu</creatorcontrib><title>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.</description><subject>Detectors</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Network security</subject><subject>Security</subject><subject>Smart grids</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwjAYhxujiQT5AMZLE8_D_l27IwFBItEDcG5K15Hh6LDtDn57u4wYT2_f9vm9ffMA8IjRFGNUvOzmH9spQZhNCeWCU3wDRoQSnnEp0O2_8z2YhHBCCGHCU09H4Liw0ZpYtw62FVzqrokBalfCWYzafAW4dqbpytod02MTLFzoqNPl6RoaMFg7uD1rH-HK1yXch55_181ZO7ism2j9A7ir-vzkWsdgv3zdzd-yzedqPZ9tMsOQiJktkKT6IBmjBBGjUZ4fqEZWM4MqYjUuBReHgupKGmIIoYwxW0oupCa5KUo6Bs_D3Itvvzsbojq1nXfpS4UFLyhLFmSi8EAZ34bgbaUuvk77_yiMVK9U9UpVr1RdlabM05CprbV_fC4LUaRtfwEzl3Ew</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Manandhar, Kebina</creator><creator>Xiaojun Cao</creator><creator>Fei Hu</creator><creator>Yao Liu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</title><author>Manandhar, Kebina ; Xiaojun Cao ; Fei Hu ; Yao Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e9083ab8443202ca066b3a0ea4c0f2ea1d757b93af8c2c223444ed8578a26c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Detectors</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Network security</topic><topic>Security</topic><topic>Smart grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manandhar, Kebina</creatorcontrib><creatorcontrib>Xiaojun Cao</creatorcontrib><creatorcontrib>Fei Hu</creatorcontrib><creatorcontrib>Yao Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manandhar, Kebina</au><au>Xiaojun Cao</au><au>Fei Hu</au><au>Yao Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>1</volume><issue>4</issue><spage>370</spage><epage>379</epage><pages>370-379</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ 2 -detector or the proposed Euclidean detector. The χ 2 -detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ 2 -detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ 2 -detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2014.2357531</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2014-12, Vol.1 (4), p.370-379 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_proquest_journals_1759348708 |
source | IEEE Electronic Library (IEL) |
subjects | Detectors Kalman filters Mathematical model Mathematical models Network security Security Smart grids |
title | Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Faults%20and%20Attacks%20Including%20False%20Data%20Injection%20Attack%20in%20Smart%20Grid%20Using%20Kalman%20Filter&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Manandhar,%20Kebina&rft.date=2014-12-01&rft.volume=1&rft.issue=4&rft.spage=370&rft.epage=379&rft.pages=370-379&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2014.2357531&rft_dat=%3Cproquest_RIE%3E3931747001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759348708&rft_id=info:pmid/&rft_ieee_id=6897944&rfr_iscdi=true |