Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR

The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2016-02, Vol.68 (2), p.475-479
Hauptverfasser: Zeng, Yimin, Guzonas, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 2
container_start_page 475
container_title JOM (1989)
container_volume 68
creator Zeng, Yimin
Guzonas, David
description The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding. To achieve high thermal efficiency, the Canadian SCWR concept has a coolant core outlet temperature of 625°C at 25 MPa with a peak cladding temperature as high as 800°C. International and Canadian research programs on corrosion issues in supercritical water have been conducted to support the SCWR concept. This paper provides a brief review of corrosion in supercritical water and summarizes the Canadian corrosion assessment work on potential fuel cladding materials. Five alloys, SS 347H, SS310S, Alloy 800H, Alloy 625 and Alloy 214, have been shown to have sufficient corrosion resistance to be used as the fuel cladding. Additional work, including tests in an in-reactor loop, is needed to confirm that these alloys would work as the fuel cladding in the Canadian SCWR.
doi_str_mv 10.1007/s11837-015-1745-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1758524072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3927836151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-a3893db027b89ac3ff8852fc92ff8b96674605131f507c00043907d726a3a01a3</originalsourceid><addsrcrecordid>eNp1kM1OAyEURonRxFp9AHckrlHuAAOzbCbWmlRN_IlLQgdoaFqmwnTh20szLty4gbs45-PyIXQN9BYolXcZQDFJKAgCkgsiTtAEBGcElIDTMlMuCVdMnaOLnDe0OLyBCXpu-5T6HPqIZzm7nHcuDrj3uDXRBmsGh5_KkYLZZuz7hOcHt8Xt1lgb4hqHeASNDSbit_bz9RKd-UK6q997ij7m9-_tgixfHh7b2ZJ0nDUDMUw1zK5oJVeqMR3zXilR-a6pyrRq6lrymgpg4AWVXVm2WFRaWdWGGQqGTdHNmLtP_dfB5UFv-kOK5UkNUpQsTmVVKBiprnwxJ-f1PoWdSd8aqD7WpsfadKlNH2vTojjV6OTCxrVLf5L_lX4AN7dtnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758524072</pqid></control><display><type>article</type><title>Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zeng, Yimin ; Guzonas, David</creator><creatorcontrib>Zeng, Yimin ; Guzonas, David</creatorcontrib><description>The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding. To achieve high thermal efficiency, the Canadian SCWR concept has a coolant core outlet temperature of 625°C at 25 MPa with a peak cladding temperature as high as 800°C. International and Canadian research programs on corrosion issues in supercritical water have been conducted to support the SCWR concept. This paper provides a brief review of corrosion in supercritical water and summarizes the Canadian corrosion assessment work on potential fuel cladding materials. Five alloys, SS 347H, SS310S, Alloy 800H, Alloy 625 and Alloy 214, have been shown to have sufficient corrosion resistance to be used as the fuel cladding. Additional work, including tests in an in-reactor loop, is needed to confirm that these alloys would work as the fuel cladding in the Canadian SCWR.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-015-1745-5</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Candidates ; Chemistry/Food Science ; Corrosion resistance ; Earth Sciences ; Energy efficiency ; Engineering ; Environment ; High temperature ; Materials selection ; Mechanical properties ; Memorial services ; Nickel alloys ; Nuclear reactors ; Oxidation ; Physics ; Power plants ; Radiation ; Stainless steel ; Stress corrosion cracking ; Studies ; Temperature ; Water</subject><ispartof>JOM (1989), 2016-02, Vol.68 (2), p.475-479</ispartof><rights>Her Majesty the Queen in Right of Canada 2015</rights><rights>Copyright Springer Science &amp; Business Media Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-a3893db027b89ac3ff8852fc92ff8b96674605131f507c00043907d726a3a01a3</citedby><cites>FETCH-LOGICAL-c439t-a3893db027b89ac3ff8852fc92ff8b96674605131f507c00043907d726a3a01a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-015-1745-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-015-1745-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zeng, Yimin</creatorcontrib><creatorcontrib>Guzonas, David</creatorcontrib><title>Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding. To achieve high thermal efficiency, the Canadian SCWR concept has a coolant core outlet temperature of 625°C at 25 MPa with a peak cladding temperature as high as 800°C. International and Canadian research programs on corrosion issues in supercritical water have been conducted to support the SCWR concept. This paper provides a brief review of corrosion in supercritical water and summarizes the Canadian corrosion assessment work on potential fuel cladding materials. Five alloys, SS 347H, SS310S, Alloy 800H, Alloy 625 and Alloy 214, have been shown to have sufficient corrosion resistance to be used as the fuel cladding. Additional work, including tests in an in-reactor loop, is needed to confirm that these alloys would work as the fuel cladding in the Canadian SCWR.</description><subject>Alloys</subject><subject>Candidates</subject><subject>Chemistry/Food Science</subject><subject>Corrosion resistance</subject><subject>Earth Sciences</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Environment</subject><subject>High temperature</subject><subject>Materials selection</subject><subject>Mechanical properties</subject><subject>Memorial services</subject><subject>Nickel alloys</subject><subject>Nuclear reactors</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Power plants</subject><subject>Radiation</subject><subject>Stainless steel</subject><subject>Stress corrosion cracking</subject><subject>Studies</subject><subject>Temperature</subject><subject>Water</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OAyEURonRxFp9AHckrlHuAAOzbCbWmlRN_IlLQgdoaFqmwnTh20szLty4gbs45-PyIXQN9BYolXcZQDFJKAgCkgsiTtAEBGcElIDTMlMuCVdMnaOLnDe0OLyBCXpu-5T6HPqIZzm7nHcuDrj3uDXRBmsGh5_KkYLZZuz7hOcHt8Xt1lgb4hqHeASNDSbit_bz9RKd-UK6q997ij7m9-_tgixfHh7b2ZJ0nDUDMUw1zK5oJVeqMR3zXilR-a6pyrRq6lrymgpg4AWVXVm2WFRaWdWGGQqGTdHNmLtP_dfB5UFv-kOK5UkNUpQsTmVVKBiprnwxJ-f1PoWdSd8aqD7WpsfadKlNH2vTojjV6OTCxrVLf5L_lX4AN7dtnA</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Zeng, Yimin</creator><creator>Guzonas, David</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160201</creationdate><title>Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR</title><author>Zeng, Yimin ; Guzonas, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-a3893db027b89ac3ff8852fc92ff8b96674605131f507c00043907d726a3a01a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Candidates</topic><topic>Chemistry/Food Science</topic><topic>Corrosion resistance</topic><topic>Earth Sciences</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Environment</topic><topic>High temperature</topic><topic>Materials selection</topic><topic>Mechanical properties</topic><topic>Memorial services</topic><topic>Nickel alloys</topic><topic>Nuclear reactors</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Power plants</topic><topic>Radiation</topic><topic>Stainless steel</topic><topic>Stress corrosion cracking</topic><topic>Studies</topic><topic>Temperature</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yimin</creatorcontrib><creatorcontrib>Guzonas, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yimin</au><au>Guzonas, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>68</volume><issue>2</issue><spage>475</spage><epage>479</epage><pages>475-479</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding. To achieve high thermal efficiency, the Canadian SCWR concept has a coolant core outlet temperature of 625°C at 25 MPa with a peak cladding temperature as high as 800°C. International and Canadian research programs on corrosion issues in supercritical water have been conducted to support the SCWR concept. This paper provides a brief review of corrosion in supercritical water and summarizes the Canadian corrosion assessment work on potential fuel cladding materials. Five alloys, SS 347H, SS310S, Alloy 800H, Alloy 625 and Alloy 214, have been shown to have sufficient corrosion resistance to be used as the fuel cladding. Additional work, including tests in an in-reactor loop, is needed to confirm that these alloys would work as the fuel cladding in the Canadian SCWR.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-015-1745-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2016-02, Vol.68 (2), p.475-479
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_1758524072
source SpringerLink Journals - AutoHoldings
subjects Alloys
Candidates
Chemistry/Food Science
Corrosion resistance
Earth Sciences
Energy efficiency
Engineering
Environment
High temperature
Materials selection
Mechanical properties
Memorial services
Nickel alloys
Nuclear reactors
Oxidation
Physics
Power plants
Radiation
Stainless steel
Stress corrosion cracking
Studies
Temperature
Water
title Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20Assessment%20of%20Candidate%20Materials%20for%20Fuel%20Cladding%20in%20Canadian%20SCWR&rft.jtitle=JOM%20(1989)&rft.au=Zeng,%20Yimin&rft.date=2016-02-01&rft.volume=68&rft.issue=2&rft.spage=475&rft.epage=479&rft.pages=475-479&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-015-1745-5&rft_dat=%3Cproquest_cross%3E3927836151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758524072&rft_id=info:pmid/&rfr_iscdi=true