An Extension of Cui-Kano's Characterization on Graph Factors

Let G be a graph with vertex set V(G) and let H:V(G)→2N be a set function associated with G. An H‐factor of graph G is a spanning subgraphs F such that dF(v)∈H(v)foreveryv∈V(G).Let f:V(G)→N be an even integer‐valued function such that f≥4 and let Hf(v)={1,3,...,f(v)−1,f(v)} for v∈V(G). In this artic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2016-01, Vol.81 (1), p.5-15
1. Verfasser: Lu, Hongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 5
container_title Journal of graph theory
container_volume 81
creator Lu, Hongliang
description Let G be a graph with vertex set V(G) and let H:V(G)→2N be a set function associated with G. An H‐factor of graph G is a spanning subgraphs F such that dF(v)∈H(v)foreveryv∈V(G).Let f:V(G)→N be an even integer‐valued function such that f≥4 and let Hf(v)={1,3,...,f(v)−1,f(v)} for v∈V(G). In this article, we investigate Hf‐factors of graphs by using Lovász's structural descriptions. Let o(G) denote the number of odd components of G. We show that if one of the following conditions holds, then G contains an Hf‐factor. (i)|V(G)| is even and o(G−S)≤f(S) for all S⊆V(G); (ii)|V(G)| is odd, dG(v)≥f(v)−1 for all v∈V(G) and o(G−S)≤f(S) for all ∅≠S⊆V(G). As a corollary, we show that if a graph G of odd order with minimum degree at least 2n−1 satisfies o(G−S)≤2n|S|forall∅≠S⊆V(G),then G contains an Hn‐factor, where Hn={1,3,...,2n−1,2n}. In particular, we make progress on the characterization problem for a special family of graphs proposed by Akiyama and Kano.
doi_str_mv 10.1002/jgt.21856
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1758137525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3926231891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4716-da197f3c52ee3c1117a6e1c57e341aaec5e2120f1699a2d73cbbe5e32fbf66e13</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0icUAc0nrtOE4kLlVow09VEBSBuFiu69AUiIudipanxzTAjdNKs9_sjgahQ8AdwJh05891h0DC4i3UApzyEAMk26iFaRyFKSbRLtpzbo69zHDSQqe9Kuival250lSBKYJsWYZXsjLHLshm0kpVa1t-ynqzroLcysUsGHjZWLePdgr56vTBz2yj-0F_nJ2Hw-v8IusNQxVxiMOphJQXVDGiNVUAwGWsQTGuaQRSasU0AYILiNNUkimnajLRTFNSTIrYk7SNjpq7C2vel9rVYm6WtvIvBXCWAOWMME-dNJSyxjmrC7Gw5Zu0awFYfJcjfDliU45nuw37Ub7q9f-guMzHv46wcZSu1qs_h7QvIuY-gHgY5eKJ3JLRzeOdOKNfSKt0Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758137525</pqid></control><display><type>article</type><title>An Extension of Cui-Kano's Characterization on Graph Factors</title><source>Access via Wiley Online Library</source><creator>Lu, Hongliang</creator><creatorcontrib>Lu, Hongliang</creatorcontrib><description>Let G be a graph with vertex set V(G) and let H:V(G)→2N be a set function associated with G. An H‐factor of graph G is a spanning subgraphs F such that dF(v)∈H(v)foreveryv∈V(G).Let f:V(G)→N be an even integer‐valued function such that f≥4 and let Hf(v)={1,3,...,f(v)−1,f(v)} for v∈V(G). In this article, we investigate Hf‐factors of graphs by using Lovász's structural descriptions. Let o(G) denote the number of odd components of G. We show that if one of the following conditions holds, then G contains an Hf‐factor. (i)|V(G)| is even and o(G−S)≤f(S) for all S⊆V(G); (ii)|V(G)| is odd, dG(v)≥f(v)−1 for all v∈V(G) and o(G−S)≤f(S) for all ∅≠S⊆V(G). As a corollary, we show that if a graph G of odd order with minimum degree at least 2n−1 satisfies o(G−S)≤2n|S|forall∅≠S⊆V(G),then G contains an Hn‐factor, where Hn={1,3,...,2n−1,2n}. In particular, we make progress on the characterization problem for a special family of graphs proposed by Akiyama and Kano.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.21856</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>gap ; H-factor ; odd factor</subject><ispartof>Journal of graph theory, 2016-01, Vol.81 (1), p.5-15</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><rights>Copyright © 2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4716-da197f3c52ee3c1117a6e1c57e341aaec5e2120f1699a2d73cbbe5e32fbf66e13</citedby><cites>FETCH-LOGICAL-c4716-da197f3c52ee3c1117a6e1c57e341aaec5e2120f1699a2d73cbbe5e32fbf66e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.21856$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.21856$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lu, Hongliang</creatorcontrib><title>An Extension of Cui-Kano's Characterization on Graph Factors</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>Let G be a graph with vertex set V(G) and let H:V(G)→2N be a set function associated with G. An H‐factor of graph G is a spanning subgraphs F such that dF(v)∈H(v)foreveryv∈V(G).Let f:V(G)→N be an even integer‐valued function such that f≥4 and let Hf(v)={1,3,...,f(v)−1,f(v)} for v∈V(G). In this article, we investigate Hf‐factors of graphs by using Lovász's structural descriptions. Let o(G) denote the number of odd components of G. We show that if one of the following conditions holds, then G contains an Hf‐factor. (i)|V(G)| is even and o(G−S)≤f(S) for all S⊆V(G); (ii)|V(G)| is odd, dG(v)≥f(v)−1 for all v∈V(G) and o(G−S)≤f(S) for all ∅≠S⊆V(G). As a corollary, we show that if a graph G of odd order with minimum degree at least 2n−1 satisfies o(G−S)≤2n|S|forall∅≠S⊆V(G),then G contains an Hn‐factor, where Hn={1,3,...,2n−1,2n}. In particular, we make progress on the characterization problem for a special family of graphs proposed by Akiyama and Kano.</description><subject>gap</subject><subject>H-factor</subject><subject>odd factor</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0icUAc0nrtOE4kLlVow09VEBSBuFiu69AUiIudipanxzTAjdNKs9_sjgahQ8AdwJh05891h0DC4i3UApzyEAMk26iFaRyFKSbRLtpzbo69zHDSQqe9Kuival250lSBKYJsWYZXsjLHLshm0kpVa1t-ynqzroLcysUsGHjZWLePdgr56vTBz2yj-0F_nJ2Hw-v8IusNQxVxiMOphJQXVDGiNVUAwGWsQTGuaQRSasU0AYILiNNUkimnajLRTFNSTIrYk7SNjpq7C2vel9rVYm6WtvIvBXCWAOWMME-dNJSyxjmrC7Gw5Zu0awFYfJcjfDliU45nuw37Ub7q9f-guMzHv46wcZSu1qs_h7QvIuY-gHgY5eKJ3JLRzeOdOKNfSKt0Ag</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Lu, Hongliang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201601</creationdate><title>An Extension of Cui-Kano's Characterization on Graph Factors</title><author>Lu, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4716-da197f3c52ee3c1117a6e1c57e341aaec5e2120f1699a2d73cbbe5e32fbf66e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>gap</topic><topic>H-factor</topic><topic>odd factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongliang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extension of Cui-Kano's Characterization on Graph Factors</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2016-01</date><risdate>2016</risdate><volume>81</volume><issue>1</issue><spage>5</spage><epage>15</epage><pages>5-15</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>Let G be a graph with vertex set V(G) and let H:V(G)→2N be a set function associated with G. An H‐factor of graph G is a spanning subgraphs F such that dF(v)∈H(v)foreveryv∈V(G).Let f:V(G)→N be an even integer‐valued function such that f≥4 and let Hf(v)={1,3,...,f(v)−1,f(v)} for v∈V(G). In this article, we investigate Hf‐factors of graphs by using Lovász's structural descriptions. Let o(G) denote the number of odd components of G. We show that if one of the following conditions holds, then G contains an Hf‐factor. (i)|V(G)| is even and o(G−S)≤f(S) for all S⊆V(G); (ii)|V(G)| is odd, dG(v)≥f(v)−1 for all v∈V(G) and o(G−S)≤f(S) for all ∅≠S⊆V(G). As a corollary, we show that if a graph G of odd order with minimum degree at least 2n−1 satisfies o(G−S)≤2n|S|forall∅≠S⊆V(G),then G contains an Hn‐factor, where Hn={1,3,...,2n−1,2n}. In particular, we make progress on the characterization problem for a special family of graphs proposed by Akiyama and Kano.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgt.21856</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2016-01, Vol.81 (1), p.5-15
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_1758137525
source Access via Wiley Online Library
subjects gap
H-factor
odd factor
title An Extension of Cui-Kano's Characterization on Graph Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extension%20of%20Cui-Kano's%20Characterization%20on%20Graph%20Factors&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Lu,%20Hongliang&rft.date=2016-01&rft.volume=81&rft.issue=1&rft.spage=5&rft.epage=15&rft.pages=5-15&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.21856&rft_dat=%3Cproquest_cross%3E3926231891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758137525&rft_id=info:pmid/&rfr_iscdi=true