Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes

We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2016-02, Vol.34 (2), p.267-277
Hauptverfasser: Ying Wang, Narayanan, Krishna R., Yu-Chih Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 2
container_start_page 267
container_title IEEE journal on selected areas in communications
container_volume 34
creator Ying Wang
Narayanan, Krishna R.
Yu-Chih Huang
description We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime.
doi_str_mv 10.1109/JSAC.2015.2504320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1757796409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7339653</ieee_id><sourcerecordid>1793243616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</originalsourceid><addsrcrecordid>eNpd0EFLwzAUwPEgCs7pBxAvBS9eOvOSJmmPs6ibDBRUPIY0fcWOrplJO_Db27rhwVPg8XuP8CfkEugMgGa3T6_zfMYoiBkTNOGMHpEJCJHGlNL0mEyo4jxOFchTchbCmlJIkpRNyNOy7dA3aHZYRrlrremwNV3t2hC5KnpxjfHDvMQQfdTdZ3SXLyLT_tKda_oRmmYPzslJZZqAF4d3St4f7t_yRbx6flzm81VsOZNdLKTlioNiFgpgZcaEBQ5Y2lJRZVJZSTDUWIWYKlYVTEGhjGFYMiWAVgWfkpv93a13Xz2GTm_qYLFpTIuuDxpUxlnCJciBXv-ja9f74cejEkplMqHZoGCvrHcheKz01tcb4781UD3W1WNdPdbVh7rDztV-p0bEPz9EzqTg_AdJT3Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757796409</pqid></control><display><type>article</type><title>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Ying Wang ; Narayanan, Krishna R. ; Yu-Chih Huang</creator><creatorcontrib>Ying Wang ; Narayanan, Krishna R. ; Yu-Chih Huang</creatorcontrib><description>We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2015.2504320</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Binary system ; Channels ; Codes ; Complexity ; Complexity theory ; Computer simulation ; Convolutional codes ; cutoff rate ; Decoding ; Error analysis ; Errors ; Iterative decoding ; Lists ; Maximum likelihood decoding ; Memory management ; Polar codes ; sequential decoding ; Strikes</subject><ispartof>IEEE journal on selected areas in communications, 2016-02, Vol.34 (2), p.267-277</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</citedby><cites>FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</cites><orcidid>0000-0001-8742-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7339653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7339653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying Wang</creatorcontrib><creatorcontrib>Narayanan, Krishna R.</creatorcontrib><creatorcontrib>Yu-Chih Huang</creatorcontrib><title>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime.</description><subject>Algorithms</subject><subject>Binary system</subject><subject>Channels</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computer simulation</subject><subject>Convolutional codes</subject><subject>cutoff rate</subject><subject>Decoding</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Iterative decoding</subject><subject>Lists</subject><subject>Maximum likelihood decoding</subject><subject>Memory management</subject><subject>Polar codes</subject><subject>sequential decoding</subject><subject>Strikes</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EFLwzAUwPEgCs7pBxAvBS9eOvOSJmmPs6ibDBRUPIY0fcWOrplJO_Db27rhwVPg8XuP8CfkEugMgGa3T6_zfMYoiBkTNOGMHpEJCJHGlNL0mEyo4jxOFchTchbCmlJIkpRNyNOy7dA3aHZYRrlrremwNV3t2hC5KnpxjfHDvMQQfdTdZ3SXLyLT_tKda_oRmmYPzslJZZqAF4d3St4f7t_yRbx6flzm81VsOZNdLKTlioNiFgpgZcaEBQ5Y2lJRZVJZSTDUWIWYKlYVTEGhjGFYMiWAVgWfkpv93a13Xz2GTm_qYLFpTIuuDxpUxlnCJciBXv-ja9f74cejEkplMqHZoGCvrHcheKz01tcb4781UD3W1WNdPdbVh7rDztV-p0bEPz9EzqTg_AdJT3Qw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Ying Wang</creator><creator>Narayanan, Krishna R.</creator><creator>Yu-Chih Huang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-8742-5332</orcidid></search><sort><creationdate>20160201</creationdate><title>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</title><author>Ying Wang ; Narayanan, Krishna R. ; Yu-Chih Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Binary system</topic><topic>Channels</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computer simulation</topic><topic>Convolutional codes</topic><topic>cutoff rate</topic><topic>Decoding</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Iterative decoding</topic><topic>Lists</topic><topic>Maximum likelihood decoding</topic><topic>Memory management</topic><topic>Polar codes</topic><topic>sequential decoding</topic><topic>Strikes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying Wang</creatorcontrib><creatorcontrib>Narayanan, Krishna R.</creatorcontrib><creatorcontrib>Yu-Chih Huang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying Wang</au><au>Narayanan, Krishna R.</au><au>Yu-Chih Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>34</volume><issue>2</issue><spage>267</spage><epage>277</epage><pages>267-277</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2015.2504320</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8742-5332</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2016-02, Vol.34 (2), p.267-277
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_1757796409
source IEEE Electronic Library (IEL)
subjects Algorithms
Binary system
Channels
Codes
Complexity
Complexity theory
Computer simulation
Convolutional codes
cutoff rate
Decoding
Error analysis
Errors
Iterative decoding
Lists
Maximum likelihood decoding
Memory management
Polar codes
sequential decoding
Strikes
title Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interleaved%20Concatenations%20of%20Polar%20Codes%20With%20BCH%20and%20Convolutional%20Codes&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Ying%20Wang&rft.date=2016-02-01&rft.volume=34&rft.issue=2&rft.spage=267&rft.epage=277&rft.pages=267-277&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2015.2504320&rft_dat=%3Cproquest_RIE%3E1793243616%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757796409&rft_id=info:pmid/&rft_ieee_id=7339653&rfr_iscdi=true