Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes
We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvemen...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2016-02, Vol.34 (2), p.267-277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 2 |
container_start_page | 267 |
container_title | IEEE journal on selected areas in communications |
container_volume | 34 |
creator | Ying Wang Narayanan, Krishna R. Yu-Chih Huang |
description | We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime. |
doi_str_mv | 10.1109/JSAC.2015.2504320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1757796409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7339653</ieee_id><sourcerecordid>1793243616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</originalsourceid><addsrcrecordid>eNpd0EFLwzAUwPEgCs7pBxAvBS9eOvOSJmmPs6ibDBRUPIY0fcWOrplJO_Db27rhwVPg8XuP8CfkEugMgGa3T6_zfMYoiBkTNOGMHpEJCJHGlNL0mEyo4jxOFchTchbCmlJIkpRNyNOy7dA3aHZYRrlrremwNV3t2hC5KnpxjfHDvMQQfdTdZ3SXLyLT_tKda_oRmmYPzslJZZqAF4d3St4f7t_yRbx6flzm81VsOZNdLKTlioNiFgpgZcaEBQ5Y2lJRZVJZSTDUWIWYKlYVTEGhjGFYMiWAVgWfkpv93a13Xz2GTm_qYLFpTIuuDxpUxlnCJciBXv-ja9f74cejEkplMqHZoGCvrHcheKz01tcb4781UD3W1WNdPdbVh7rDztV-p0bEPz9EzqTg_AdJT3Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757796409</pqid></control><display><type>article</type><title>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Ying Wang ; Narayanan, Krishna R. ; Yu-Chih Huang</creator><creatorcontrib>Ying Wang ; Narayanan, Krishna R. ; Yu-Chih Huang</creatorcontrib><description>We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2015.2504320</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Binary system ; Channels ; Codes ; Complexity ; Complexity theory ; Computer simulation ; Convolutional codes ; cutoff rate ; Decoding ; Error analysis ; Errors ; Iterative decoding ; Lists ; Maximum likelihood decoding ; Memory management ; Polar codes ; sequential decoding ; Strikes</subject><ispartof>IEEE journal on selected areas in communications, 2016-02, Vol.34 (2), p.267-277</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</citedby><cites>FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</cites><orcidid>0000-0001-8742-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7339653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7339653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying Wang</creatorcontrib><creatorcontrib>Narayanan, Krishna R.</creatorcontrib><creatorcontrib>Yu-Chih Huang</creatorcontrib><title>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime.</description><subject>Algorithms</subject><subject>Binary system</subject><subject>Channels</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computer simulation</subject><subject>Convolutional codes</subject><subject>cutoff rate</subject><subject>Decoding</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Iterative decoding</subject><subject>Lists</subject><subject>Maximum likelihood decoding</subject><subject>Memory management</subject><subject>Polar codes</subject><subject>sequential decoding</subject><subject>Strikes</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EFLwzAUwPEgCs7pBxAvBS9eOvOSJmmPs6ibDBRUPIY0fcWOrplJO_Db27rhwVPg8XuP8CfkEugMgGa3T6_zfMYoiBkTNOGMHpEJCJHGlNL0mEyo4jxOFchTchbCmlJIkpRNyNOy7dA3aHZYRrlrremwNV3t2hC5KnpxjfHDvMQQfdTdZ3SXLyLT_tKda_oRmmYPzslJZZqAF4d3St4f7t_yRbx6flzm81VsOZNdLKTlioNiFgpgZcaEBQ5Y2lJRZVJZSTDUWIWYKlYVTEGhjGFYMiWAVgWfkpv93a13Xz2GTm_qYLFpTIuuDxpUxlnCJciBXv-ja9f74cejEkplMqHZoGCvrHcheKz01tcb4781UD3W1WNdPdbVh7rDztV-p0bEPz9EzqTg_AdJT3Qw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Ying Wang</creator><creator>Narayanan, Krishna R.</creator><creator>Yu-Chih Huang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-8742-5332</orcidid></search><sort><creationdate>20160201</creationdate><title>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</title><author>Ying Wang ; Narayanan, Krishna R. ; Yu-Chih Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-56c373172c1b12d925c131edcd707a86f61a0ac7ee872fb271b7aa2ed27510fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Binary system</topic><topic>Channels</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computer simulation</topic><topic>Convolutional codes</topic><topic>cutoff rate</topic><topic>Decoding</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Iterative decoding</topic><topic>Lists</topic><topic>Maximum likelihood decoding</topic><topic>Memory management</topic><topic>Polar codes</topic><topic>sequential decoding</topic><topic>Strikes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying Wang</creatorcontrib><creatorcontrib>Narayanan, Krishna R.</creatorcontrib><creatorcontrib>Yu-Chih Huang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying Wang</au><au>Narayanan, Krishna R.</au><au>Yu-Chih Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>34</volume><issue>2</issue><spage>267</spage><epage>277</epage><pages>267-277</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We analyze interleaved concatenation schemes of polar codes with outer binary BCH codes and convolutional codes. We show that both BCH-polar and Conv-polar codes can have a frame error rate that decays exponentially with the code length for all rates up to capacity, which is a substantial improvement in the error exponent over stand-alone polar codes. Interleaved concatenation with long constraint length convolutional codes is an effective way to leverage the fact that polarization increases the cutoff rate of the channel. Simulation results show that Conv-polar codes when decoded with the proposed soft-output multistage iterative decoding algorithm can outperform stand-alone polar codes decoded with successive cancellation or belief propagation decoding. It may be comparable to stand-alone polar codes with list decoding in the high SNR regime. In addition to this, we show that the proposed concatenation scheme requires lower memory and decoding complexity in comparison to belief propagation and list decoding of polar codes. Practically, the scheme enables rate compatible outer codes which ease hardware implementation. Our results suggest that the proposed method may strike a better balance between performance and complexity compared to existing methods in the finite-length regime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2015.2504320</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8742-5332</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2016-02, Vol.34 (2), p.267-277 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_journals_1757796409 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Binary system Channels Codes Complexity Complexity theory Computer simulation Convolutional codes cutoff rate Decoding Error analysis Errors Iterative decoding Lists Maximum likelihood decoding Memory management Polar codes sequential decoding Strikes |
title | Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interleaved%20Concatenations%20of%20Polar%20Codes%20With%20BCH%20and%20Convolutional%20Codes&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Ying%20Wang&rft.date=2016-02-01&rft.volume=34&rft.issue=2&rft.spage=267&rft.epage=277&rft.pages=267-277&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2015.2504320&rft_dat=%3Cproquest_RIE%3E1793243616%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757796409&rft_id=info:pmid/&rft_ieee_id=7339653&rfr_iscdi=true |