Assessment of solar data estimation models for four cities in Iran

The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2015-11, Vol.12 (9-11), p.1272-1275
Hauptverfasser: Jahani, Elham, Sadati, S. M. Sajed, Yousefzadeh, Moslem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1275
container_issue 9-11
container_start_page 1272
container_title Physica status solidi. C
container_volume 12
creator Jahani, Elham
Sadati, S. M. Sajed
Yousefzadeh, Moslem
description The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssc.201510105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1757606443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923873591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4665-49a3ad8fab8e46d5664dcbf3a69355827c995e98d070a32c3ba5a2cf752f5e293</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxRujiYhePTfxvNiPbXf3CESQhKAJft2a0m2TxWWLnSXIf2_JGuLNw2Tm8H4zbx5Ct5QMKCHsfgtgBoxQQQkl4gz1qKQkoTJl53HOJUskF_QSXQGsCeGCUNlDoyGABdjYpsXeYfC1DrjUrcYW2mqj28o3eONLWwN2PsTaBWyqtrKAqwbPgm6u0YXTNdib395Hr5OHl_FjMn-azsbDeWJSKUWSFprrMnd6ldtUlkLKtDQrx7UsuBA5y0xRCFvkJcmI5szwlRaaGZcJ5oRlBe-ju27vNvivXbSn1tFME08qmolMEpmmPKoGncoEDxCsU9sQ_wgHRYk65qSOOalTThEoOmBf1fbwj1o9L5fjv2zSsRW09vvE6vCpZMYzod4XU_UxydlixKh64z_2PHrd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757606443</pqid></control><display><type>article</type><title>Assessment of solar data estimation models for four cities in Iran</title><source>Access via Wiley Online Library</source><creator>Jahani, Elham ; Sadati, S. M. Sajed ; Yousefzadeh, Moslem</creator><creatorcontrib>Jahani, Elham ; Sadati, S. M. Sajed ; Yousefzadeh, Moslem</creatorcontrib><description>The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201510105</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Angstrom's model ; artificial neural network ; global insolation ; solar resources</subject><ispartof>Physica status solidi. C, 2015-11, Vol.12 (9-11), p.1272-1275</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4665-49a3ad8fab8e46d5664dcbf3a69355827c995e98d070a32c3ba5a2cf752f5e293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201510105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201510105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jahani, Elham</creatorcontrib><creatorcontrib>Sadati, S. M. Sajed</creatorcontrib><creatorcontrib>Yousefzadeh, Moslem</creatorcontrib><title>Assessment of solar data estimation models for four cities in Iran</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi C</addtitle><description>The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>Angstrom's model</subject><subject>artificial neural network</subject><subject>global insolation</subject><subject>solar resources</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEQxRujiYhePTfxvNiPbXf3CESQhKAJft2a0m2TxWWLnSXIf2_JGuLNw2Tm8H4zbx5Ct5QMKCHsfgtgBoxQQQkl4gz1qKQkoTJl53HOJUskF_QSXQGsCeGCUNlDoyGABdjYpsXeYfC1DrjUrcYW2mqj28o3eONLWwN2PsTaBWyqtrKAqwbPgm6u0YXTNdib395Hr5OHl_FjMn-azsbDeWJSKUWSFprrMnd6ldtUlkLKtDQrx7UsuBA5y0xRCFvkJcmI5szwlRaaGZcJ5oRlBe-ju27vNvivXbSn1tFME08qmolMEpmmPKoGncoEDxCsU9sQ_wgHRYk65qSOOalTThEoOmBf1fbwj1o9L5fjv2zSsRW09vvE6vCpZMYzod4XU_UxydlixKh64z_2PHrd</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Jahani, Elham</creator><creator>Sadati, S. M. Sajed</creator><creator>Yousefzadeh, Moslem</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201511</creationdate><title>Assessment of solar data estimation models for four cities in Iran</title><author>Jahani, Elham ; Sadati, S. M. Sajed ; Yousefzadeh, Moslem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4665-49a3ad8fab8e46d5664dcbf3a69355827c995e98d070a32c3ba5a2cf752f5e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Angstrom's model</topic><topic>artificial neural network</topic><topic>global insolation</topic><topic>solar resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahani, Elham</creatorcontrib><creatorcontrib>Sadati, S. M. Sajed</creatorcontrib><creatorcontrib>Yousefzadeh, Moslem</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahani, Elham</au><au>Sadati, S. M. Sajed</au><au>Yousefzadeh, Moslem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of solar data estimation models for four cities in Iran</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi C</addtitle><date>2015-11</date><risdate>2015</risdate><volume>12</volume><issue>9-11</issue><spage>1272</spage><epage>1275</epage><pages>1272-1275</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201510105</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6351
ispartof Physica status solidi. C, 2015-11, Vol.12 (9-11), p.1272-1275
issn 1862-6351
1610-1642
language eng
recordid cdi_proquest_journals_1757606443
source Access via Wiley Online Library
subjects Angstrom's model
artificial neural network
global insolation
solar resources
title Assessment of solar data estimation models for four cities in Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20solar%20data%20estimation%20models%20for%20four%20cities%20in%20Iran&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Jahani,%20Elham&rft.date=2015-11&rft.volume=12&rft.issue=9-11&rft.spage=1272&rft.epage=1275&rft.pages=1272-1275&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201510105&rft_dat=%3Cproquest_cross%3E3923873591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757606443&rft_id=info:pmid/&rfr_iscdi=true