Assessment of solar data estimation models for four cities in Iran
The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locatio...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. C 2015-11, Vol.12 (9-11), p.1272-1275 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1275 |
---|---|
container_issue | 9-11 |
container_start_page | 1272 |
container_title | Physica status solidi. C |
container_volume | 12 |
creator | Jahani, Elham Sadati, S. M. Sajed Yousefzadeh, Moslem |
description | The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssc.201510105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1757606443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923873591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4665-49a3ad8fab8e46d5664dcbf3a69355827c995e98d070a32c3ba5a2cf752f5e293</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxRujiYhePTfxvNiPbXf3CESQhKAJft2a0m2TxWWLnSXIf2_JGuLNw2Tm8H4zbx5Ct5QMKCHsfgtgBoxQQQkl4gz1qKQkoTJl53HOJUskF_QSXQGsCeGCUNlDoyGABdjYpsXeYfC1DrjUrcYW2mqj28o3eONLWwN2PsTaBWyqtrKAqwbPgm6u0YXTNdib395Hr5OHl_FjMn-azsbDeWJSKUWSFprrMnd6ldtUlkLKtDQrx7UsuBA5y0xRCFvkJcmI5szwlRaaGZcJ5oRlBe-ju27vNvivXbSn1tFME08qmolMEpmmPKoGncoEDxCsU9sQ_wgHRYk65qSOOalTThEoOmBf1fbwj1o9L5fjv2zSsRW09vvE6vCpZMYzod4XU_UxydlixKh64z_2PHrd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757606443</pqid></control><display><type>article</type><title>Assessment of solar data estimation models for four cities in Iran</title><source>Access via Wiley Online Library</source><creator>Jahani, Elham ; Sadati, S. M. Sajed ; Yousefzadeh, Moslem</creator><creatorcontrib>Jahani, Elham ; Sadati, S. M. Sajed ; Yousefzadeh, Moslem</creatorcontrib><description>The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201510105</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Angstrom's model ; artificial neural network ; global insolation ; solar resources</subject><ispartof>Physica status solidi. C, 2015-11, Vol.12 (9-11), p.1272-1275</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4665-49a3ad8fab8e46d5664dcbf3a69355827c995e98d070a32c3ba5a2cf752f5e293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201510105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201510105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jahani, Elham</creatorcontrib><creatorcontrib>Sadati, S. M. Sajed</creatorcontrib><creatorcontrib>Yousefzadeh, Moslem</creatorcontrib><title>Assessment of solar data estimation models for four cities in Iran</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi C</addtitle><description>The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>Angstrom's model</subject><subject>artificial neural network</subject><subject>global insolation</subject><subject>solar resources</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEQxRujiYhePTfxvNiPbXf3CESQhKAJft2a0m2TxWWLnSXIf2_JGuLNw2Tm8H4zbx5Ct5QMKCHsfgtgBoxQQQkl4gz1qKQkoTJl53HOJUskF_QSXQGsCeGCUNlDoyGABdjYpsXeYfC1DrjUrcYW2mqj28o3eONLWwN2PsTaBWyqtrKAqwbPgm6u0YXTNdib395Hr5OHl_FjMn-azsbDeWJSKUWSFprrMnd6ldtUlkLKtDQrx7UsuBA5y0xRCFvkJcmI5szwlRaaGZcJ5oRlBe-ju27vNvivXbSn1tFME08qmolMEpmmPKoGncoEDxCsU9sQ_wgHRYk65qSOOalTThEoOmBf1fbwj1o9L5fjv2zSsRW09vvE6vCpZMYzod4XU_UxydlixKh64z_2PHrd</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Jahani, Elham</creator><creator>Sadati, S. M. Sajed</creator><creator>Yousefzadeh, Moslem</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201511</creationdate><title>Assessment of solar data estimation models for four cities in Iran</title><author>Jahani, Elham ; Sadati, S. M. Sajed ; Yousefzadeh, Moslem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4665-49a3ad8fab8e46d5664dcbf3a69355827c995e98d070a32c3ba5a2cf752f5e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Angstrom's model</topic><topic>artificial neural network</topic><topic>global insolation</topic><topic>solar resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahani, Elham</creatorcontrib><creatorcontrib>Sadati, S. M. Sajed</creatorcontrib><creatorcontrib>Yousefzadeh, Moslem</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahani, Elham</au><au>Sadati, S. M. Sajed</au><au>Yousefzadeh, Moslem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of solar data estimation models for four cities in Iran</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi C</addtitle><date>2015-11</date><risdate>2015</risdate><volume>12</volume><issue>9-11</issue><spage>1272</spage><epage>1275</epage><pages>1272-1275</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>The estimated solar resources are important for designing renewable energy systems since measured data are not always available. The estimation models have been introduced in several studies. These models are mainly dependent on local meteorological data and need to be assessed for different locations and times. The current study compares the results of Angstrom's model and a neural network (NN) model developed for this study with measured data for four cities in Iran. The time resolution for the estimated global horizontal insolation is monthly. The results show that the developed NN model has promising performance and considering the calibration process for Angstrom's model it can be used as an alternative. The NN model uses climatic data to estimate the solar insolation which makes it more flexible in terms of being applicable for different regions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201510105</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6351 |
ispartof | Physica status solidi. C, 2015-11, Vol.12 (9-11), p.1272-1275 |
issn | 1862-6351 1610-1642 |
language | eng |
recordid | cdi_proquest_journals_1757606443 |
source | Access via Wiley Online Library |
subjects | Angstrom's model artificial neural network global insolation solar resources |
title | Assessment of solar data estimation models for four cities in Iran |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20solar%20data%20estimation%20models%20for%20four%20cities%20in%20Iran&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Jahani,%20Elham&rft.date=2015-11&rft.volume=12&rft.issue=9-11&rft.spage=1272&rft.epage=1275&rft.pages=1272-1275&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201510105&rft_dat=%3Cproquest_cross%3E3923873591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757606443&rft_id=info:pmid/&rfr_iscdi=true |