Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator
Summary Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in th...
Gespeichert in:
Veröffentlicht in: | International transactions on electrical energy systems 2015-12, Vol.25 (12), p.3509-3522 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3522 |
---|---|
container_issue | 12 |
container_start_page | 3509 |
container_title | International transactions on electrical energy systems |
container_volume | 25 |
creator | Wang, Dan Jia, Hongjie Wang, Chengshan Lu, Ning Fan, Menghua Zhou, Yue Qi, Yebai |
description | Summary
Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/etep.2048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1757227691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3922943611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-fd667180fde8d575c865a0acae6a72696a4c5861668f321baf459b1bfc98c8aa3</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOOYe_A8KPndL2jVJH2VO5xg6ZM7HcE3TLTNra5Kq_e9NmYjHwX1wv-8OviC4xmiMEYon0slmHKMpOwsGMUpRRFHCzv_py2Bk7QH5yqYYUzYI2m2tHexkaB3kSivXhbLaQyXkUVYubK2qdqHbS3OsPeGUAK27UNSVM7XWsgihabTqeRuCb786lrVxkUesM6Aqz3wq41rQ4U5W0oCrzVVwUYK2cvQ7h8Hr_XwzW0Sr54fH2e0qEgnFLCoLQvxEZSFZkdJUMJICAgGSAI1JRmAqUkYwIaxMYpxDOU2zHOelyJhgAMkwuDndbUz90Urr-KFuTeVfckxTGseUZNhTkxP1pbTseGPUEUzHMeJ9qrxPlfep8vlmvu6Fd0Qnh7JOfv85wLxzQhOa8renB07ulutk-bLg2-QHpTZ_Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757227691</pqid></control><display><type>article</type><title>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Dan ; Jia, Hongjie ; Wang, Chengshan ; Lu, Ning ; Fan, Menghua ; Zhou, Yue ; Qi, Yebai</creator><creatorcontrib>Wang, Dan ; Jia, Hongjie ; Wang, Chengshan ; Lu, Ning ; Fan, Menghua ; Zhou, Yue ; Qi, Yebai</creatorcontrib><description>Summary
Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 2050-7038</identifier><identifier>EISSN: 2050-7038</identifier><identifier>DOI: 10.1002/etep.2048</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>demand response ; HVAC ; indirect load control ; regulation service ; thermostatically controlled loads ; voltage stability enhancement</subject><ispartof>International transactions on electrical energy systems, 2015-12, Vol.25 (12), p.3509-3522</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-fd667180fde8d575c865a0acae6a72696a4c5861668f321baf459b1bfc98c8aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetep.2048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetep.2048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Jia, Hongjie</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Fan, Menghua</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Qi, Yebai</creatorcontrib><title>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</title><title>International transactions on electrical energy systems</title><addtitle>Int. Trans. Electr. Energ. Syst</addtitle><description>Summary
Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>demand response</subject><subject>HVAC</subject><subject>indirect load control</subject><subject>regulation service</subject><subject>thermostatically controlled loads</subject><subject>voltage stability enhancement</subject><issn>2050-7038</issn><issn>2050-7038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkNFLwzAQxosoOOYe_A8KPndL2jVJH2VO5xg6ZM7HcE3TLTNra5Kq_e9NmYjHwX1wv-8OviC4xmiMEYon0slmHKMpOwsGMUpRRFHCzv_py2Bk7QH5yqYYUzYI2m2tHexkaB3kSivXhbLaQyXkUVYubK2qdqHbS3OsPeGUAK27UNSVM7XWsgihabTqeRuCb786lrVxkUesM6Aqz3wq41rQ4U5W0oCrzVVwUYK2cvQ7h8Hr_XwzW0Sr54fH2e0qEgnFLCoLQvxEZSFZkdJUMJICAgGSAI1JRmAqUkYwIaxMYpxDOU2zHOelyJhgAMkwuDndbUz90Urr-KFuTeVfckxTGseUZNhTkxP1pbTseGPUEUzHMeJ9qrxPlfep8vlmvu6Fd0Qnh7JOfv85wLxzQhOa8renB07ulutk-bLg2-QHpTZ_Iw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Wang, Dan</creator><creator>Jia, Hongjie</creator><creator>Wang, Chengshan</creator><creator>Lu, Ning</creator><creator>Fan, Menghua</creator><creator>Zhou, Yue</creator><creator>Qi, Yebai</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</title><author>Wang, Dan ; Jia, Hongjie ; Wang, Chengshan ; Lu, Ning ; Fan, Menghua ; Zhou, Yue ; Qi, Yebai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-fd667180fde8d575c865a0acae6a72696a4c5861668f321baf459b1bfc98c8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>demand response</topic><topic>HVAC</topic><topic>indirect load control</topic><topic>regulation service</topic><topic>thermostatically controlled loads</topic><topic>voltage stability enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Jia, Hongjie</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Fan, Menghua</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Qi, Yebai</creatorcontrib><collection>Istex</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International transactions on electrical energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dan</au><au>Jia, Hongjie</au><au>Wang, Chengshan</au><au>Lu, Ning</au><au>Fan, Menghua</au><au>Zhou, Yue</au><au>Qi, Yebai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</atitle><jtitle>International transactions on electrical energy systems</jtitle><addtitle>Int. Trans. Electr. Energ. Syst</addtitle><date>2015-12</date><risdate>2015</risdate><volume>25</volume><issue>12</issue><spage>3509</spage><epage>3522</epage><pages>3509-3522</pages><issn>2050-7038</issn><eissn>2050-7038</eissn><abstract>Summary
Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/etep.2048</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7038 |
ispartof | International transactions on electrical energy systems, 2015-12, Vol.25 (12), p.3509-3522 |
issn | 2050-7038 2050-7038 |
language | eng |
recordid | cdi_proquest_journals_1757227691 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | demand response HVAC indirect load control regulation service thermostatically controlled loads voltage stability enhancement |
title | Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20stability%20enhancement%20using%20thermostatically%20controlled%20appliances%20as%20a%20comfort-constrained%20virtual%20generator&rft.jtitle=International%20transactions%20on%20electrical%20energy%20systems&rft.au=Wang,%20Dan&rft.date=2015-12&rft.volume=25&rft.issue=12&rft.spage=3509&rft.epage=3522&rft.pages=3509-3522&rft.issn=2050-7038&rft.eissn=2050-7038&rft_id=info:doi/10.1002/etep.2048&rft_dat=%3Cproquest_wiley%3E3922943611%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757227691&rft_id=info:pmid/&rfr_iscdi=true |