Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator

Summary Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions on electrical energy systems 2015-12, Vol.25 (12), p.3509-3522
Hauptverfasser: Wang, Dan, Jia, Hongjie, Wang, Chengshan, Lu, Ning, Fan, Menghua, Zhou, Yue, Qi, Yebai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3522
container_issue 12
container_start_page 3509
container_title International transactions on electrical energy systems
container_volume 25
creator Wang, Dan
Jia, Hongjie
Wang, Chengshan
Lu, Ning
Fan, Menghua
Zhou, Yue
Qi, Yebai
description Summary Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/etep.2048
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1757227691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3922943611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-fd667180fde8d575c865a0acae6a72696a4c5861668f321baf459b1bfc98c8aa3</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOOYe_A8KPndL2jVJH2VO5xg6ZM7HcE3TLTNra5Kq_e9NmYjHwX1wv-8OviC4xmiMEYon0slmHKMpOwsGMUpRRFHCzv_py2Bk7QH5yqYYUzYI2m2tHexkaB3kSivXhbLaQyXkUVYubK2qdqHbS3OsPeGUAK27UNSVM7XWsgihabTqeRuCb786lrVxkUesM6Aqz3wq41rQ4U5W0oCrzVVwUYK2cvQ7h8Hr_XwzW0Sr54fH2e0qEgnFLCoLQvxEZSFZkdJUMJICAgGSAI1JRmAqUkYwIaxMYpxDOU2zHOelyJhgAMkwuDndbUz90Urr-KFuTeVfckxTGseUZNhTkxP1pbTseGPUEUzHMeJ9qrxPlfep8vlmvu6Fd0Qnh7JOfv85wLxzQhOa8renB07ulutk-bLg2-QHpTZ_Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757227691</pqid></control><display><type>article</type><title>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Dan ; Jia, Hongjie ; Wang, Chengshan ; Lu, Ning ; Fan, Menghua ; Zhou, Yue ; Qi, Yebai</creator><creatorcontrib>Wang, Dan ; Jia, Hongjie ; Wang, Chengshan ; Lu, Ning ; Fan, Menghua ; Zhou, Yue ; Qi, Yebai</creatorcontrib><description>Summary Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 2050-7038</identifier><identifier>EISSN: 2050-7038</identifier><identifier>DOI: 10.1002/etep.2048</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>demand response ; HVAC ; indirect load control ; regulation service ; thermostatically controlled loads ; voltage stability enhancement</subject><ispartof>International transactions on electrical energy systems, 2015-12, Vol.25 (12), p.3509-3522</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-fd667180fde8d575c865a0acae6a72696a4c5861668f321baf459b1bfc98c8aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetep.2048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetep.2048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Jia, Hongjie</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Fan, Menghua</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Qi, Yebai</creatorcontrib><title>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</title><title>International transactions on electrical energy systems</title><addtitle>Int. Trans. Electr. Energ. Syst</addtitle><description>Summary Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>demand response</subject><subject>HVAC</subject><subject>indirect load control</subject><subject>regulation service</subject><subject>thermostatically controlled loads</subject><subject>voltage stability enhancement</subject><issn>2050-7038</issn><issn>2050-7038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkNFLwzAQxosoOOYe_A8KPndL2jVJH2VO5xg6ZM7HcE3TLTNra5Kq_e9NmYjHwX1wv-8OviC4xmiMEYon0slmHKMpOwsGMUpRRFHCzv_py2Bk7QH5yqYYUzYI2m2tHexkaB3kSivXhbLaQyXkUVYubK2qdqHbS3OsPeGUAK27UNSVM7XWsgihabTqeRuCb786lrVxkUesM6Aqz3wq41rQ4U5W0oCrzVVwUYK2cvQ7h8Hr_XwzW0Sr54fH2e0qEgnFLCoLQvxEZSFZkdJUMJICAgGSAI1JRmAqUkYwIaxMYpxDOU2zHOelyJhgAMkwuDndbUz90Urr-KFuTeVfckxTGseUZNhTkxP1pbTseGPUEUzHMeJ9qrxPlfep8vlmvu6Fd0Qnh7JOfv85wLxzQhOa8renB07ulutk-bLg2-QHpTZ_Iw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Wang, Dan</creator><creator>Jia, Hongjie</creator><creator>Wang, Chengshan</creator><creator>Lu, Ning</creator><creator>Fan, Menghua</creator><creator>Zhou, Yue</creator><creator>Qi, Yebai</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</title><author>Wang, Dan ; Jia, Hongjie ; Wang, Chengshan ; Lu, Ning ; Fan, Menghua ; Zhou, Yue ; Qi, Yebai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-fd667180fde8d575c865a0acae6a72696a4c5861668f321baf459b1bfc98c8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>demand response</topic><topic>HVAC</topic><topic>indirect load control</topic><topic>regulation service</topic><topic>thermostatically controlled loads</topic><topic>voltage stability enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Jia, Hongjie</creatorcontrib><creatorcontrib>Wang, Chengshan</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Fan, Menghua</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Qi, Yebai</creatorcontrib><collection>Istex</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International transactions on electrical energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dan</au><au>Jia, Hongjie</au><au>Wang, Chengshan</au><au>Lu, Ning</au><au>Fan, Menghua</au><au>Zhou, Yue</au><au>Qi, Yebai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator</atitle><jtitle>International transactions on electrical energy systems</jtitle><addtitle>Int. Trans. Electr. Energ. Syst</addtitle><date>2015-12</date><risdate>2015</risdate><volume>25</volume><issue>12</issue><spage>3509</spage><epage>3522</epage><pages>3509-3522</pages><issn>2050-7038</issn><eissn>2050-7038</eissn><abstract>Summary Conventional direct load‐shedding for achieving static voltage stability lacks considerations on both customer comfort and energy efficiency, resulting in higher cost and emission. A novel security‐based, optimal load‐shedding strategy considering customer comfort settings is presented in this paper. A temperature priority list method is used to model the virtual generator (VG) consisting of thermostatically controlled appliances (TCAs). To illustrate the control process and performance evaluation of the proposed load‐shedding scheme, a modified IEEE 6‐bus test system is used. Three heat, ventilation, and air‐conditioning (HVAC) groups are numerically simulated to respond to optimal load shedding signals. Reduced responsive load population, variations of temperature dead‐bands, and different outdoor temperature profiles are modeled to evaluate the capacity variations of the VG and its control performance. The results demonstrate that TCAs can provide satisfactory voltage stability. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/etep.2048</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7038
ispartof International transactions on electrical energy systems, 2015-12, Vol.25 (12), p.3509-3522
issn 2050-7038
2050-7038
language eng
recordid cdi_proquest_journals_1757227691
source Wiley Online Library - AutoHoldings Journals
subjects demand response
HVAC
indirect load control
regulation service
thermostatically controlled loads
voltage stability enhancement
title Voltage stability enhancement using thermostatically controlled appliances as a comfort-constrained virtual generator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20stability%20enhancement%20using%20thermostatically%20controlled%20appliances%20as%20a%20comfort-constrained%20virtual%20generator&rft.jtitle=International%20transactions%20on%20electrical%20energy%20systems&rft.au=Wang,%20Dan&rft.date=2015-12&rft.volume=25&rft.issue=12&rft.spage=3509&rft.epage=3522&rft.pages=3509-3522&rft.issn=2050-7038&rft.eissn=2050-7038&rft_id=info:doi/10.1002/etep.2048&rft_dat=%3Cproquest_wiley%3E3922943611%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757227691&rft_id=info:pmid/&rfr_iscdi=true