Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy

Summary Hyperglycemia induces all isoforms of transforming growth factor β (TGFβ), which in turn play key roles in inflammation and fibrosis that characterize diabetic nephropathy. Sphingosine 1‐phosphate (S1P) is a signaling sphingolipid, derived from sphingosine by the action of sphingosine kinase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental pharmacology & physiology 2016-01, Vol.43 (1), p.56-66
Hauptverfasser: Yaghobian, Dania, Don, Anthony S., Yaghobian, Sarina, Chen, Xinming, Pollock, Carol A., Saad, Sonia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 56
container_title Clinical and experimental pharmacology & physiology
container_volume 43
creator Yaghobian, Dania
Don, Anthony S.
Yaghobian, Sarina
Chen, Xinming
Pollock, Carol A.
Saad, Sonia
description Summary Hyperglycemia induces all isoforms of transforming growth factor β (TGFβ), which in turn play key roles in inflammation and fibrosis that characterize diabetic nephropathy. Sphingosine 1‐phosphate (S1P) is a signaling sphingolipid, derived from sphingosine by the action of sphingosine kinase (SK). S1P mediates many biological processes, which mimic TGFβ signaling. To determine the role of SK1 and S1P in inducing fibrosis and inflammation, and the interaction with TGFβ‐1, 2 and 3 signalling in diabetic nephropathy, human proximal tubular cells (HK2 cells) were exposed to normal (5 mmol/L) or high (30 mmol/L) glucose or TGFβ‐1, ‐2, ‐3 ± an SK inhibitor (SKI‐II) or SK1 siRNA. Control and diabetic wild type (WT) and SK1−/− mice were studied. Fibrotic and inflammatory markers, and relevant downstream signalling pathways were assessed. SK1 mRNA and protein expression was increased in HK2 cells exposed to high glucose or TGFβ1,‐2,‐3. All TGFβ isoforms induced fibronectin, collagen IV and macrophage chemoattractant protein 1 (MCP1), which were reversed by both SKI‐II and SK1 siRNA. Exposure to S1P increased phospho‐p44/42 expression, AP‐1 binding and NFkB phosphorylation. WT diabetic mice exhibited increased renal cortical S1P, fibronectin, collagen IV and MCP1 mRNA and protein expression compared to SK1−/− diabetic mice. In summary, this study demonstrates that inhibiting the formation of S1P reduces tubulointerstitial renal inflammation and fibrosis in diabetic nephropathy.
doi_str_mv 10.1111/1440-1681.12494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1757122938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3922597861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4424-e47fcc562ff119278a1238b770f0cf9dfa6176d39254e28c520f2e075e5a57f03</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EgvKY2VAk5sD1K05GVJWCVBUGEKPlJDZ1aZ1gJ4L-exxauuLlWsfnnCt_CF1iuMHx3GLGIMVZjm8wYQU7QKO9cohGQIGnOBdwgk5DWAIAh4weoxOSMcwA6Ai5R1d5rYKuk9AurHtvgnU6wWm7aKKgOp2sdW3jDIl1ZqXWa9XZxiXK1YmxpY_-4SXp-rJfKR-vy95vBiWmSt3ZKnG6XfimVd1ic46OjFoFfbGbZ-j1fvIyfkhnT9PH8d0srRgjLNVMmKriGTEG44KIXGFC81IIMFCZojYqwyKraUE40ySvOAFDNAiuueLCAD1D19ve1jefvQ6dXDa9d3GlxIILTEhB8-i63bqq-I3gtZGtt2vlNxKDHPjKgaYcaMpfvjFxtevty8hl7_8DGg18a_iyK735r0-OJ89_xek2Z0Onv_c55T9kJqjg8m0-lXw6Hxfs_k1S-gMTA5Rd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757122938</pqid></control><display><type>article</type><title>Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Yaghobian, Dania ; Don, Anthony S. ; Yaghobian, Sarina ; Chen, Xinming ; Pollock, Carol A. ; Saad, Sonia</creator><creatorcontrib>Yaghobian, Dania ; Don, Anthony S. ; Yaghobian, Sarina ; Chen, Xinming ; Pollock, Carol A. ; Saad, Sonia</creatorcontrib><description>Summary Hyperglycemia induces all isoforms of transforming growth factor β (TGFβ), which in turn play key roles in inflammation and fibrosis that characterize diabetic nephropathy. Sphingosine 1‐phosphate (S1P) is a signaling sphingolipid, derived from sphingosine by the action of sphingosine kinase (SK). S1P mediates many biological processes, which mimic TGFβ signaling. To determine the role of SK1 and S1P in inducing fibrosis and inflammation, and the interaction with TGFβ‐1, 2 and 3 signalling in diabetic nephropathy, human proximal tubular cells (HK2 cells) were exposed to normal (5 mmol/L) or high (30 mmol/L) glucose or TGFβ‐1, ‐2, ‐3 ± an SK inhibitor (SKI‐II) or SK1 siRNA. Control and diabetic wild type (WT) and SK1−/− mice were studied. Fibrotic and inflammatory markers, and relevant downstream signalling pathways were assessed. SK1 mRNA and protein expression was increased in HK2 cells exposed to high glucose or TGFβ1,‐2,‐3. All TGFβ isoforms induced fibronectin, collagen IV and macrophage chemoattractant protein 1 (MCP1), which were reversed by both SKI‐II and SK1 siRNA. Exposure to S1P increased phospho‐p44/42 expression, AP‐1 binding and NFkB phosphorylation. WT diabetic mice exhibited increased renal cortical S1P, fibronectin, collagen IV and MCP1 mRNA and protein expression compared to SK1−/− diabetic mice. In summary, this study demonstrates that inhibiting the formation of S1P reduces tubulointerstitial renal inflammation and fibrosis in diabetic nephropathy.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.12494</identifier><identifier>PMID: 26414003</identifier><language>eng</language><publisher>Australia: Blackwell Publishing Ltd</publisher><subject>Animals ; Biomarkers - metabolism ; Cell Line ; diabetes ; Diabetic Nephropathies - enzymology ; Diabetic Nephropathies - metabolism ; Diabetic Nephropathies - pathology ; Dose-Response Relationship, Drug ; Enzyme Inhibitors - pharmacology ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fibrosis ; Gene Expression Regulation, Enzymologic - drug effects ; Gene Silencing ; Glucose - pharmacology ; Humans ; Inflammation - enzymology ; Inflammation - metabolism ; Inflammation - pathology ; Kidney Cortex - drug effects ; Kidney Cortex - metabolism ; Kidney Cortex - pathology ; Kidney Tubules - drug effects ; Kidney Tubules - injuries ; Kidney Tubules - metabolism ; Kidney Tubules - pathology ; Lysophospholipids - metabolism ; Male ; Mice ; nephropathy ; NF-kappa B - metabolism ; Phosphoproteins - metabolism ; Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - deficiency ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Sphingosine - analogs &amp; derivatives ; Sphingosine - metabolism ; sphingosine kinase ; Transcription Factor AP-1 - metabolism ; Transforming Growth Factor beta - metabolism</subject><ispartof>Clinical and experimental pharmacology &amp; physiology, 2016-01, Vol.43 (1), p.56-66</ispartof><rights>2015 Wiley Publishing Asia Pty Ltd</rights><rights>2015 Wiley Publishing Asia Pty Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4424-e47fcc562ff119278a1238b770f0cf9dfa6176d39254e28c520f2e075e5a57f03</citedby><cites>FETCH-LOGICAL-c4424-e47fcc562ff119278a1238b770f0cf9dfa6176d39254e28c520f2e075e5a57f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1440-1681.12494$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1440-1681.12494$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26414003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaghobian, Dania</creatorcontrib><creatorcontrib>Don, Anthony S.</creatorcontrib><creatorcontrib>Yaghobian, Sarina</creatorcontrib><creatorcontrib>Chen, Xinming</creatorcontrib><creatorcontrib>Pollock, Carol A.</creatorcontrib><creatorcontrib>Saad, Sonia</creatorcontrib><title>Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy</title><title>Clinical and experimental pharmacology &amp; physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Summary Hyperglycemia induces all isoforms of transforming growth factor β (TGFβ), which in turn play key roles in inflammation and fibrosis that characterize diabetic nephropathy. Sphingosine 1‐phosphate (S1P) is a signaling sphingolipid, derived from sphingosine by the action of sphingosine kinase (SK). S1P mediates many biological processes, which mimic TGFβ signaling. To determine the role of SK1 and S1P in inducing fibrosis and inflammation, and the interaction with TGFβ‐1, 2 and 3 signalling in diabetic nephropathy, human proximal tubular cells (HK2 cells) were exposed to normal (5 mmol/L) or high (30 mmol/L) glucose or TGFβ‐1, ‐2, ‐3 ± an SK inhibitor (SKI‐II) or SK1 siRNA. Control and diabetic wild type (WT) and SK1−/− mice were studied. Fibrotic and inflammatory markers, and relevant downstream signalling pathways were assessed. SK1 mRNA and protein expression was increased in HK2 cells exposed to high glucose or TGFβ1,‐2,‐3. All TGFβ isoforms induced fibronectin, collagen IV and macrophage chemoattractant protein 1 (MCP1), which were reversed by both SKI‐II and SK1 siRNA. Exposure to S1P increased phospho‐p44/42 expression, AP‐1 binding and NFkB phosphorylation. WT diabetic mice exhibited increased renal cortical S1P, fibronectin, collagen IV and MCP1 mRNA and protein expression compared to SK1−/− diabetic mice. In summary, this study demonstrates that inhibiting the formation of S1P reduces tubulointerstitial renal inflammation and fibrosis in diabetic nephropathy.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Cell Line</subject><subject>diabetes</subject><subject>Diabetic Nephropathies - enzymology</subject><subject>Diabetic Nephropathies - metabolism</subject><subject>Diabetic Nephropathies - pathology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fibrosis</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Gene Silencing</subject><subject>Glucose - pharmacology</subject><subject>Humans</subject><subject>Inflammation - enzymology</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - pathology</subject><subject>Kidney Cortex - drug effects</subject><subject>Kidney Cortex - metabolism</subject><subject>Kidney Cortex - pathology</subject><subject>Kidney Tubules - drug effects</subject><subject>Kidney Tubules - injuries</subject><subject>Kidney Tubules - metabolism</subject><subject>Kidney Tubules - pathology</subject><subject>Lysophospholipids - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>nephropathy</subject><subject>NF-kappa B - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - deficiency</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - metabolism</subject><subject>sphingosine kinase</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transforming Growth Factor beta - metabolism</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EgvKY2VAk5sD1K05GVJWCVBUGEKPlJDZ1aZ1gJ4L-exxauuLlWsfnnCt_CF1iuMHx3GLGIMVZjm8wYQU7QKO9cohGQIGnOBdwgk5DWAIAh4weoxOSMcwA6Ai5R1d5rYKuk9AurHtvgnU6wWm7aKKgOp2sdW3jDIl1ZqXWa9XZxiXK1YmxpY_-4SXp-rJfKR-vy95vBiWmSt3ZKnG6XfimVd1ic46OjFoFfbGbZ-j1fvIyfkhnT9PH8d0srRgjLNVMmKriGTEG44KIXGFC81IIMFCZojYqwyKraUE40ySvOAFDNAiuueLCAD1D19ve1jefvQ6dXDa9d3GlxIILTEhB8-i63bqq-I3gtZGtt2vlNxKDHPjKgaYcaMpfvjFxtevty8hl7_8DGg18a_iyK735r0-OJ89_xek2Z0Onv_c55T9kJqjg8m0-lXw6Hxfs_k1S-gMTA5Rd</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Yaghobian, Dania</creator><creator>Don, Anthony S.</creator><creator>Yaghobian, Sarina</creator><creator>Chen, Xinming</creator><creator>Pollock, Carol A.</creator><creator>Saad, Sonia</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>201601</creationdate><title>Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy</title><author>Yaghobian, Dania ; Don, Anthony S. ; Yaghobian, Sarina ; Chen, Xinming ; Pollock, Carol A. ; Saad, Sonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4424-e47fcc562ff119278a1238b770f0cf9dfa6176d39254e28c520f2e075e5a57f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Cell Line</topic><topic>diabetes</topic><topic>Diabetic Nephropathies - enzymology</topic><topic>Diabetic Nephropathies - metabolism</topic><topic>Diabetic Nephropathies - pathology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fibrosis</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Gene Silencing</topic><topic>Glucose - pharmacology</topic><topic>Humans</topic><topic>Inflammation - enzymology</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - pathology</topic><topic>Kidney Cortex - drug effects</topic><topic>Kidney Cortex - metabolism</topic><topic>Kidney Cortex - pathology</topic><topic>Kidney Tubules - drug effects</topic><topic>Kidney Tubules - injuries</topic><topic>Kidney Tubules - metabolism</topic><topic>Kidney Tubules - pathology</topic><topic>Lysophospholipids - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>nephropathy</topic><topic>NF-kappa B - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - deficiency</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - metabolism</topic><topic>sphingosine kinase</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transforming Growth Factor beta - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghobian, Dania</creatorcontrib><creatorcontrib>Don, Anthony S.</creatorcontrib><creatorcontrib>Yaghobian, Sarina</creatorcontrib><creatorcontrib>Chen, Xinming</creatorcontrib><creatorcontrib>Pollock, Carol A.</creatorcontrib><creatorcontrib>Saad, Sonia</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghobian, Dania</au><au>Don, Anthony S.</au><au>Yaghobian, Sarina</au><au>Chen, Xinming</au><au>Pollock, Carol A.</au><au>Saad, Sonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy</atitle><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2016-01</date><risdate>2016</risdate><volume>43</volume><issue>1</issue><spage>56</spage><epage>66</epage><pages>56-66</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Summary Hyperglycemia induces all isoforms of transforming growth factor β (TGFβ), which in turn play key roles in inflammation and fibrosis that characterize diabetic nephropathy. Sphingosine 1‐phosphate (S1P) is a signaling sphingolipid, derived from sphingosine by the action of sphingosine kinase (SK). S1P mediates many biological processes, which mimic TGFβ signaling. To determine the role of SK1 and S1P in inducing fibrosis and inflammation, and the interaction with TGFβ‐1, 2 and 3 signalling in diabetic nephropathy, human proximal tubular cells (HK2 cells) were exposed to normal (5 mmol/L) or high (30 mmol/L) glucose or TGFβ‐1, ‐2, ‐3 ± an SK inhibitor (SKI‐II) or SK1 siRNA. Control and diabetic wild type (WT) and SK1−/− mice were studied. Fibrotic and inflammatory markers, and relevant downstream signalling pathways were assessed. SK1 mRNA and protein expression was increased in HK2 cells exposed to high glucose or TGFβ1,‐2,‐3. All TGFβ isoforms induced fibronectin, collagen IV and macrophage chemoattractant protein 1 (MCP1), which were reversed by both SKI‐II and SK1 siRNA. Exposure to S1P increased phospho‐p44/42 expression, AP‐1 binding and NFkB phosphorylation. WT diabetic mice exhibited increased renal cortical S1P, fibronectin, collagen IV and MCP1 mRNA and protein expression compared to SK1−/− diabetic mice. In summary, this study demonstrates that inhibiting the formation of S1P reduces tubulointerstitial renal inflammation and fibrosis in diabetic nephropathy.</abstract><cop>Australia</cop><pub>Blackwell Publishing Ltd</pub><pmid>26414003</pmid><doi>10.1111/1440-1681.12494</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-1870
ispartof Clinical and experimental pharmacology & physiology, 2016-01, Vol.43 (1), p.56-66
issn 0305-1870
1440-1681
language eng
recordid cdi_proquest_journals_1757122938
source MEDLINE; Wiley Online Library Journals
subjects Animals
Biomarkers - metabolism
Cell Line
diabetes
Diabetic Nephropathies - enzymology
Diabetic Nephropathies - metabolism
Diabetic Nephropathies - pathology
Dose-Response Relationship, Drug
Enzyme Inhibitors - pharmacology
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
Extracellular Signal-Regulated MAP Kinases - metabolism
Fibrosis
Gene Expression Regulation, Enzymologic - drug effects
Gene Silencing
Glucose - pharmacology
Humans
Inflammation - enzymology
Inflammation - metabolism
Inflammation - pathology
Kidney Cortex - drug effects
Kidney Cortex - metabolism
Kidney Cortex - pathology
Kidney Tubules - drug effects
Kidney Tubules - injuries
Kidney Tubules - metabolism
Kidney Tubules - pathology
Lysophospholipids - metabolism
Male
Mice
nephropathy
NF-kappa B - metabolism
Phosphoproteins - metabolism
Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors
Phosphotransferases (Alcohol Group Acceptor) - deficiency
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Sphingosine - analogs & derivatives
Sphingosine - metabolism
sphingosine kinase
Transcription Factor AP-1 - metabolism
Transforming Growth Factor beta - metabolism
title Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20sphingosine%201-phosphate%20mediates%20inflammation%20and%20fibrosis%20in%20tubular%20injury%20in%20diabetic%20nephropathy&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Yaghobian,%20Dania&rft.date=2016-01&rft.volume=43&rft.issue=1&rft.spage=56&rft.epage=66&rft.pages=56-66&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.12494&rft_dat=%3Cproquest_cross%3E3922597861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757122938&rft_id=info:pmid/26414003&rfr_iscdi=true