Robust attitude tracking control of spacecraft under control input magnitude and rate saturations

Summary This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2016-03, Vol.26 (4), p.799-815
Hauptverfasser: Zou, An-Min, Kumar, Krishna Dev, de Ruiter, Anton H. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 815
container_issue 4
container_start_page 799
container_title International journal of robust and nonlinear control
container_volume 26
creator Zou, An-Min
Kumar, Krishna Dev
de Ruiter, Anton H. J.
description Summary This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.3338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1756509192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3920653951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKvgTwi4cTM1r2kmSylahVKhvsBNuM0kZfrI1CSD9t87ZaTgwtU9cL57L-cgdEnJgBLCboI3A855cYR6lCiVUcbV8V4LlRWK8VN0FuOSkNZjoodgVs-bmDCkVKWmtDgFMKvKL7CpfQr1GtcOxy0YawK4hBtf2nDwKr9tEt7AwnfL4EscIFkcITWtqGofz9GJg3W0F7-zj17v715GD9nkafw4up1kRhBaZEIQwRx3uWCKKFnwnLGhNG4-Z7QgpDBSipJYNcwFKKcIAAhXSpYzCgXMBe-jq-7uNtSfjY1JL-sm-PalpjIf5kTRNn4fXXeUCXWMwTq9DdUGwk5TovcF6rZAvS-wRbMO_arWdvcvp2fT0V--isl-H3gIKz2UXOb6fTrWz5JOP9Q012_8B8vIgSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756509192</pqid></control><display><type>article</type><title>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zou, An-Min ; Kumar, Krishna Dev ; de Ruiter, Anton H. J.</creator><creatorcontrib>Zou, An-Min ; Kumar, Krishna Dev ; de Ruiter, Anton H. J.</creatorcontrib><description>Summary This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3338</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>attitude tracking ; backstepping ; input magnitude and rate saturations ; robust control ; spacecraft</subject><ispartof>International journal of robust and nonlinear control, 2016-03, Vol.26 (4), p.799-815</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</citedby><cites>FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zou, An-Min</creatorcontrib><creatorcontrib>Kumar, Krishna Dev</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J.</creatorcontrib><title>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust. Nonlinear Control</addtitle><description>Summary This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>attitude tracking</subject><subject>backstepping</subject><subject>input magnitude and rate saturations</subject><subject>robust control</subject><subject>spacecraft</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKvgTwi4cTM1r2kmSylahVKhvsBNuM0kZfrI1CSD9t87ZaTgwtU9cL57L-cgdEnJgBLCboI3A855cYR6lCiVUcbV8V4LlRWK8VN0FuOSkNZjoodgVs-bmDCkVKWmtDgFMKvKL7CpfQr1GtcOxy0YawK4hBtf2nDwKr9tEt7AwnfL4EscIFkcITWtqGofz9GJg3W0F7-zj17v715GD9nkafw4up1kRhBaZEIQwRx3uWCKKFnwnLGhNG4-Z7QgpDBSipJYNcwFKKcIAAhXSpYzCgXMBe-jq-7uNtSfjY1JL-sm-PalpjIf5kTRNn4fXXeUCXWMwTq9DdUGwk5TovcF6rZAvS-wRbMO_arWdvcvp2fT0V--isl-H3gIKz2UXOb6fTrWz5JOP9Q012_8B8vIgSk</recordid><startdate>20160310</startdate><enddate>20160310</enddate><creator>Zou, An-Min</creator><creator>Kumar, Krishna Dev</creator><creator>de Ruiter, Anton H. J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160310</creationdate><title>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</title><author>Zou, An-Min ; Kumar, Krishna Dev ; de Ruiter, Anton H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>attitude tracking</topic><topic>backstepping</topic><topic>input magnitude and rate saturations</topic><topic>robust control</topic><topic>spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, An-Min</creatorcontrib><creatorcontrib>Kumar, Krishna Dev</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, An-Min</au><au>Kumar, Krishna Dev</au><au>de Ruiter, Anton H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust. Nonlinear Control</addtitle><date>2016-03-10</date><risdate>2016</risdate><volume>26</volume><issue>4</issue><spage>799</spage><epage>815</epage><pages>799-815</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/rnc.3338</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2016-03, Vol.26 (4), p.799-815
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_1756509192
source Wiley Online Library Journals Frontfile Complete
subjects attitude tracking
backstepping
input magnitude and rate saturations
robust control
spacecraft
title Robust attitude tracking control of spacecraft under control input magnitude and rate saturations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20attitude%20tracking%20control%20of%20spacecraft%20under%20control%20input%20magnitude%20and%20rate%20saturations&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Zou,%20An-Min&rft.date=2016-03-10&rft.volume=26&rft.issue=4&rft.spage=799&rft.epage=815&rft.pages=799-815&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3338&rft_dat=%3Cproquest_cross%3E3920653951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756509192&rft_id=info:pmid/&rfr_iscdi=true