Robust attitude tracking control of spacecraft under control input magnitude and rate saturations
Summary This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented p...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2016-03, Vol.26 (4), p.799-815 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | 4 |
container_start_page | 799 |
container_title | International journal of robust and nonlinear control |
container_volume | 26 |
creator | Zou, An-Min Kumar, Krishna Dev de Ruiter, Anton H. J. |
description | Summary
This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/rnc.3338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1756509192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3920653951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKvgTwi4cTM1r2kmSylahVKhvsBNuM0kZfrI1CSD9t87ZaTgwtU9cL57L-cgdEnJgBLCboI3A855cYR6lCiVUcbV8V4LlRWK8VN0FuOSkNZjoodgVs-bmDCkVKWmtDgFMKvKL7CpfQr1GtcOxy0YawK4hBtf2nDwKr9tEt7AwnfL4EscIFkcITWtqGofz9GJg3W0F7-zj17v715GD9nkafw4up1kRhBaZEIQwRx3uWCKKFnwnLGhNG4-Z7QgpDBSipJYNcwFKKcIAAhXSpYzCgXMBe-jq-7uNtSfjY1JL-sm-PalpjIf5kTRNn4fXXeUCXWMwTq9DdUGwk5TovcF6rZAvS-wRbMO_arWdvcvp2fT0V--isl-H3gIKz2UXOb6fTrWz5JOP9Q012_8B8vIgSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756509192</pqid></control><display><type>article</type><title>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zou, An-Min ; Kumar, Krishna Dev ; de Ruiter, Anton H. J.</creator><creatorcontrib>Zou, An-Min ; Kumar, Krishna Dev ; de Ruiter, Anton H. J.</creatorcontrib><description>Summary
This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3338</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>attitude tracking ; backstepping ; input magnitude and rate saturations ; robust control ; spacecraft</subject><ispartof>International journal of robust and nonlinear control, 2016-03, Vol.26 (4), p.799-815</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</citedby><cites>FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zou, An-Min</creatorcontrib><creatorcontrib>Kumar, Krishna Dev</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J.</creatorcontrib><title>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust. Nonlinear Control</addtitle><description>Summary
This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>attitude tracking</subject><subject>backstepping</subject><subject>input magnitude and rate saturations</subject><subject>robust control</subject><subject>spacecraft</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKvgTwi4cTM1r2kmSylahVKhvsBNuM0kZfrI1CSD9t87ZaTgwtU9cL57L-cgdEnJgBLCboI3A855cYR6lCiVUcbV8V4LlRWK8VN0FuOSkNZjoodgVs-bmDCkVKWmtDgFMKvKL7CpfQr1GtcOxy0YawK4hBtf2nDwKr9tEt7AwnfL4EscIFkcITWtqGofz9GJg3W0F7-zj17v715GD9nkafw4up1kRhBaZEIQwRx3uWCKKFnwnLGhNG4-Z7QgpDBSipJYNcwFKKcIAAhXSpYzCgXMBe-jq-7uNtSfjY1JL-sm-PalpjIf5kTRNn4fXXeUCXWMwTq9DdUGwk5TovcF6rZAvS-wRbMO_arWdvcvp2fT0V--isl-H3gIKz2UXOb6fTrWz5JOP9Q012_8B8vIgSk</recordid><startdate>20160310</startdate><enddate>20160310</enddate><creator>Zou, An-Min</creator><creator>Kumar, Krishna Dev</creator><creator>de Ruiter, Anton H. J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160310</creationdate><title>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</title><author>Zou, An-Min ; Kumar, Krishna Dev ; de Ruiter, Anton H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4018-44042f3f54290978352267cfbb218008c774d0e9654a9f90aaa4fd72521a8ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>attitude tracking</topic><topic>backstepping</topic><topic>input magnitude and rate saturations</topic><topic>robust control</topic><topic>spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, An-Min</creatorcontrib><creatorcontrib>Kumar, Krishna Dev</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, An-Min</au><au>Kumar, Krishna Dev</au><au>de Ruiter, Anton H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust attitude tracking control of spacecraft under control input magnitude and rate saturations</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust. Nonlinear Control</addtitle><date>2016-03-10</date><risdate>2016</risdate><volume>26</volume><issue>4</issue><spage>799</spage><epage>815</epage><pages>799-815</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
This paper investigates the problem of attitude tracking control of spacecraft subject to control input magnitude and rate saturations. The smooth hyperbolic tangent function is used to model the magnitude and rate saturations. As the system is non‐affine in the control input, an augmented plant is presented to facilitate the development of the control law. The backstepping technique, robust control and adaptive control approaches are applied to design the control law. The stability of the closed‐loop system is guaranteed by the Lyapunov method. Numerical simulations are presented to demonstrate the performance of the proposed controller. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/rnc.3338</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2016-03, Vol.26 (4), p.799-815 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_1756509192 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | attitude tracking backstepping input magnitude and rate saturations robust control spacecraft |
title | Robust attitude tracking control of spacecraft under control input magnitude and rate saturations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20attitude%20tracking%20control%20of%20spacecraft%20under%20control%20input%20magnitude%20and%20rate%20saturations&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Zou,%20An-Min&rft.date=2016-03-10&rft.volume=26&rft.issue=4&rft.spage=799&rft.epage=815&rft.pages=799-815&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3338&rft_dat=%3Cproquest_cross%3E3920653951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756509192&rft_id=info:pmid/&rfr_iscdi=true |