Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial Lung Disease Patterns in Computed Tomography Using 3D Texture Features
Lack of classifier robustness is a barrier to widespread adoption of computer-aided diagnosis systems for computed tomography (CT). We propose a novel Robustness-Driven Feature Selection (RDFS) algorithm that preferentially selects features robust to variations in CT technical factors. We evaluated...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2016-01, Vol.35 (1), p.144-157 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | IEEE transactions on medical imaging |
container_volume | 35 |
creator | Chong, Daniel Y. Kim, Hyun J. Pechin Lo Young, Stefano McNitt-Gray, Michael F. Abtin, Fereidoun Goldin, Jonathan G. Brown, Matthew S. |
description | Lack of classifier robustness is a barrier to widespread adoption of computer-aided diagnosis systems for computed tomography (CT). We propose a novel Robustness-Driven Feature Selection (RDFS) algorithm that preferentially selects features robust to variations in CT technical factors. We evaluated RDFS in CT classification of fibrotic interstitial lung disease using 3D texture features. CTs were collected for 99 adult subjects separated into three datasets: training, multi-reconstruction, testing. Two thoracic radiologists provided cubic volumes of interest corresponding to six classes: pulmonary fibrosis, ground-glass opacity, honeycombing, normal lung parenchyma, airway, vessel. The multi-reconstruction dataset consisted of CT raw sinogram data reconstructed by systematically varying slice thickness, reconstruction kernel, and tube current (using a synthetic reduced-tube-current algorithm). Two support vector machine classifiers were created, one using RDFS ("with-RDFS") and one not ("without-RDFS"). Classifier robustness was compared on the multi-reconstruction dataset, using Cohen's kappa to assess classification agreement against a reference reconstruction. Classifier performance was compared on the testing dataset using the extended g-mean (EGM) measure. With-RDFS exhibited superior robustness (kappa 0.899-0.989) compared to without-RDFS (kappa 0.827-0.968). Both classifiers demonstrated similar performance on the testing dataset (EGM 0.778 for with-RDFS; 0.785 for without-RDFS), indicating that RDFS does not compromise classifier performance when discarding nonrobust features. RDFS is highly effective at improving classifier robustness against slice thickness, reconstruction kernel, and tube current without sacrificing performance, a result that has implications for multicenter clinical trials that rely on accurate and reproducible quantitative analysis of CT images collected under varied conditions across multiple sites, scanners, and timepoints. |
doi_str_mv | 10.1109/TMI.2015.2459064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1753305198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7163608</ieee_id><sourcerecordid>3911992921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1baaed95a2deceb20cdb976ad5859a1ef67cd6641802ddcff3fa7b5007e93c383</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERbeFOxISssSllyxjO87HEe2ysNJWILqVeoscZ1JcJfHW4yD6Q_i_ZD_ogdNIM8-8Y_lh7K2AuRBQftxer-cShJ7LVJeQpS_YTGhdJFKndy_ZDGReJACZPGcXRA8AItVQvmLnMpNQKChn7M8PX48UByRKlsH9woGv0MQxIL_BDm10fuBu4IvOELnWWXPo-JavXB18dJavh4iBoovOdHwzDvd86QgNIf9u4jQa6BDg-90YseFb3_v7YHY_n_gtuYlWS77F34eTp9P0mp21piN8c6qX7Hb1ebv4mmy-fVkvPm0Sq9I8JqI2BptSG9mgxVqCbeoyz0yjC10agW2W2ybLUlGAbBrbtqo1ea0BciyVVYW6ZFfH3F3wjyNSrHpHFrvODOhHqkSuUz39ba4n9MN_6IMfwzC9bk8pBVqU-0A4UjZ4ooBttQuuN-GpElDtlVWTsmqvrDopm1ben4LHusfmeeGfowl4dwQcIj6Pc5GpbAL-AsScnWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753305198</pqid></control><display><type>article</type><title>Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial Lung Disease Patterns in Computed Tomography Using 3D Texture Features</title><source>IEEE Electronic Library (IEL)</source><creator>Chong, Daniel Y. ; Kim, Hyun J. ; Pechin Lo ; Young, Stefano ; McNitt-Gray, Michael F. ; Abtin, Fereidoun ; Goldin, Jonathan G. ; Brown, Matthew S.</creator><creatorcontrib>Chong, Daniel Y. ; Kim, Hyun J. ; Pechin Lo ; Young, Stefano ; McNitt-Gray, Michael F. ; Abtin, Fereidoun ; Goldin, Jonathan G. ; Brown, Matthew S.</creatorcontrib><description>Lack of classifier robustness is a barrier to widespread adoption of computer-aided diagnosis systems for computed tomography (CT). We propose a novel Robustness-Driven Feature Selection (RDFS) algorithm that preferentially selects features robust to variations in CT technical factors. We evaluated RDFS in CT classification of fibrotic interstitial lung disease using 3D texture features. CTs were collected for 99 adult subjects separated into three datasets: training, multi-reconstruction, testing. Two thoracic radiologists provided cubic volumes of interest corresponding to six classes: pulmonary fibrosis, ground-glass opacity, honeycombing, normal lung parenchyma, airway, vessel. The multi-reconstruction dataset consisted of CT raw sinogram data reconstructed by systematically varying slice thickness, reconstruction kernel, and tube current (using a synthetic reduced-tube-current algorithm). Two support vector machine classifiers were created, one using RDFS ("with-RDFS") and one not ("without-RDFS"). Classifier robustness was compared on the multi-reconstruction dataset, using Cohen's kappa to assess classification agreement against a reference reconstruction. Classifier performance was compared on the testing dataset using the extended g-mean (EGM) measure. With-RDFS exhibited superior robustness (kappa 0.899-0.989) compared to without-RDFS (kappa 0.827-0.968). Both classifiers demonstrated similar performance on the testing dataset (EGM 0.778 for with-RDFS; 0.785 for without-RDFS), indicating that RDFS does not compromise classifier performance when discarding nonrobust features. RDFS is highly effective at improving classifier robustness against slice thickness, reconstruction kernel, and tube current without sacrificing performance, a result that has implications for multicenter clinical trials that rely on accurate and reproducible quantitative analysis of CT images collected under varied conditions across multiple sites, scanners, and timepoints.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2459064</identifier><identifier>PMID: 26208309</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computed tomography ; Datasets ; fibrotic interstitial lung disease ; High-resolution computed tomography ; Humans ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Lung Diseases, Interstitial - diagnostic imaging ; Lungs ; Machine Learning ; Medical imaging ; pattern recognition and classification ; Pattern Recognition, Automated ; Pulmonary Fibrosis - diagnostic imaging ; Resource description framework ; Robustness ; Testing ; Tomography, X-Ray Computed - methods ; Training</subject><ispartof>IEEE transactions on medical imaging, 2016-01, Vol.35 (1), p.144-157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1baaed95a2deceb20cdb976ad5859a1ef67cd6641802ddcff3fa7b5007e93c383</citedby><cites>FETCH-LOGICAL-c347t-1baaed95a2deceb20cdb976ad5859a1ef67cd6641802ddcff3fa7b5007e93c383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7163608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7163608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26208309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chong, Daniel Y.</creatorcontrib><creatorcontrib>Kim, Hyun J.</creatorcontrib><creatorcontrib>Pechin Lo</creatorcontrib><creatorcontrib>Young, Stefano</creatorcontrib><creatorcontrib>McNitt-Gray, Michael F.</creatorcontrib><creatorcontrib>Abtin, Fereidoun</creatorcontrib><creatorcontrib>Goldin, Jonathan G.</creatorcontrib><creatorcontrib>Brown, Matthew S.</creatorcontrib><title>Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial Lung Disease Patterns in Computed Tomography Using 3D Texture Features</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Lack of classifier robustness is a barrier to widespread adoption of computer-aided diagnosis systems for computed tomography (CT). We propose a novel Robustness-Driven Feature Selection (RDFS) algorithm that preferentially selects features robust to variations in CT technical factors. We evaluated RDFS in CT classification of fibrotic interstitial lung disease using 3D texture features. CTs were collected for 99 adult subjects separated into three datasets: training, multi-reconstruction, testing. Two thoracic radiologists provided cubic volumes of interest corresponding to six classes: pulmonary fibrosis, ground-glass opacity, honeycombing, normal lung parenchyma, airway, vessel. The multi-reconstruction dataset consisted of CT raw sinogram data reconstructed by systematically varying slice thickness, reconstruction kernel, and tube current (using a synthetic reduced-tube-current algorithm). Two support vector machine classifiers were created, one using RDFS ("with-RDFS") and one not ("without-RDFS"). Classifier robustness was compared on the multi-reconstruction dataset, using Cohen's kappa to assess classification agreement against a reference reconstruction. Classifier performance was compared on the testing dataset using the extended g-mean (EGM) measure. With-RDFS exhibited superior robustness (kappa 0.899-0.989) compared to without-RDFS (kappa 0.827-0.968). Both classifiers demonstrated similar performance on the testing dataset (EGM 0.778 for with-RDFS; 0.785 for without-RDFS), indicating that RDFS does not compromise classifier performance when discarding nonrobust features. RDFS is highly effective at improving classifier robustness against slice thickness, reconstruction kernel, and tube current without sacrificing performance, a result that has implications for multicenter clinical trials that rely on accurate and reproducible quantitative analysis of CT images collected under varied conditions across multiple sites, scanners, and timepoints.</description><subject>Computed tomography</subject><subject>Datasets</subject><subject>fibrotic interstitial lung disease</subject><subject>High-resolution computed tomography</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Lung Diseases, Interstitial - diagnostic imaging</subject><subject>Lungs</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>pattern recognition and classification</subject><subject>Pattern Recognition, Automated</subject><subject>Pulmonary Fibrosis - diagnostic imaging</subject><subject>Resource description framework</subject><subject>Robustness</subject><subject>Testing</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi1ERbeFOxISssSllyxjO87HEe2ysNJWILqVeoscZ1JcJfHW4yD6Q_i_ZD_ogdNIM8-8Y_lh7K2AuRBQftxer-cShJ7LVJeQpS_YTGhdJFKndy_ZDGReJACZPGcXRA8AItVQvmLnMpNQKChn7M8PX48UByRKlsH9woGv0MQxIL_BDm10fuBu4IvOELnWWXPo-JavXB18dJavh4iBoovOdHwzDvd86QgNIf9u4jQa6BDg-90YseFb3_v7YHY_n_gtuYlWS77F34eTp9P0mp21piN8c6qX7Hb1ebv4mmy-fVkvPm0Sq9I8JqI2BptSG9mgxVqCbeoyz0yjC10agW2W2ybLUlGAbBrbtqo1ea0BciyVVYW6ZFfH3F3wjyNSrHpHFrvODOhHqkSuUz39ba4n9MN_6IMfwzC9bk8pBVqU-0A4UjZ4ooBttQuuN-GpElDtlVWTsmqvrDopm1ben4LHusfmeeGfowl4dwQcIj6Pc5GpbAL-AsScnWg</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Chong, Daniel Y.</creator><creator>Kim, Hyun J.</creator><creator>Pechin Lo</creator><creator>Young, Stefano</creator><creator>McNitt-Gray, Michael F.</creator><creator>Abtin, Fereidoun</creator><creator>Goldin, Jonathan G.</creator><creator>Brown, Matthew S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial Lung Disease Patterns in Computed Tomography Using 3D Texture Features</title><author>Chong, Daniel Y. ; Kim, Hyun J. ; Pechin Lo ; Young, Stefano ; McNitt-Gray, Michael F. ; Abtin, Fereidoun ; Goldin, Jonathan G. ; Brown, Matthew S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1baaed95a2deceb20cdb976ad5859a1ef67cd6641802ddcff3fa7b5007e93c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computed tomography</topic><topic>Datasets</topic><topic>fibrotic interstitial lung disease</topic><topic>High-resolution computed tomography</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Lung Diseases, Interstitial - diagnostic imaging</topic><topic>Lungs</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>pattern recognition and classification</topic><topic>Pattern Recognition, Automated</topic><topic>Pulmonary Fibrosis - diagnostic imaging</topic><topic>Resource description framework</topic><topic>Robustness</topic><topic>Testing</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chong, Daniel Y.</creatorcontrib><creatorcontrib>Kim, Hyun J.</creatorcontrib><creatorcontrib>Pechin Lo</creatorcontrib><creatorcontrib>Young, Stefano</creatorcontrib><creatorcontrib>McNitt-Gray, Michael F.</creatorcontrib><creatorcontrib>Abtin, Fereidoun</creatorcontrib><creatorcontrib>Goldin, Jonathan G.</creatorcontrib><creatorcontrib>Brown, Matthew S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Daniel Y.</au><au>Kim, Hyun J.</au><au>Pechin Lo</au><au>Young, Stefano</au><au>McNitt-Gray, Michael F.</au><au>Abtin, Fereidoun</au><au>Goldin, Jonathan G.</au><au>Brown, Matthew S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial Lung Disease Patterns in Computed Tomography Using 3D Texture Features</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2016-01</date><risdate>2016</risdate><volume>35</volume><issue>1</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Lack of classifier robustness is a barrier to widespread adoption of computer-aided diagnosis systems for computed tomography (CT). We propose a novel Robustness-Driven Feature Selection (RDFS) algorithm that preferentially selects features robust to variations in CT technical factors. We evaluated RDFS in CT classification of fibrotic interstitial lung disease using 3D texture features. CTs were collected for 99 adult subjects separated into three datasets: training, multi-reconstruction, testing. Two thoracic radiologists provided cubic volumes of interest corresponding to six classes: pulmonary fibrosis, ground-glass opacity, honeycombing, normal lung parenchyma, airway, vessel. The multi-reconstruction dataset consisted of CT raw sinogram data reconstructed by systematically varying slice thickness, reconstruction kernel, and tube current (using a synthetic reduced-tube-current algorithm). Two support vector machine classifiers were created, one using RDFS ("with-RDFS") and one not ("without-RDFS"). Classifier robustness was compared on the multi-reconstruction dataset, using Cohen's kappa to assess classification agreement against a reference reconstruction. Classifier performance was compared on the testing dataset using the extended g-mean (EGM) measure. With-RDFS exhibited superior robustness (kappa 0.899-0.989) compared to without-RDFS (kappa 0.827-0.968). Both classifiers demonstrated similar performance on the testing dataset (EGM 0.778 for with-RDFS; 0.785 for without-RDFS), indicating that RDFS does not compromise classifier performance when discarding nonrobust features. RDFS is highly effective at improving classifier robustness against slice thickness, reconstruction kernel, and tube current without sacrificing performance, a result that has implications for multicenter clinical trials that rely on accurate and reproducible quantitative analysis of CT images collected under varied conditions across multiple sites, scanners, and timepoints.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26208309</pmid><doi>10.1109/TMI.2015.2459064</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2016-01, Vol.35 (1), p.144-157 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_1753305198 |
source | IEEE Electronic Library (IEL) |
subjects | Computed tomography Datasets fibrotic interstitial lung disease High-resolution computed tomography Humans Image Processing, Computer-Assisted - methods Image reconstruction Lung Diseases, Interstitial - diagnostic imaging Lungs Machine Learning Medical imaging pattern recognition and classification Pattern Recognition, Automated Pulmonary Fibrosis - diagnostic imaging Resource description framework Robustness Testing Tomography, X-Ray Computed - methods Training |
title | Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial Lung Disease Patterns in Computed Tomography Using 3D Texture Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness-Driven%20Feature%20Selection%20in%20Classification%20of%20Fibrotic%20Interstitial%20Lung%20Disease%20Patterns%20in%20Computed%20Tomography%20Using%203D%20Texture%20Features&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Chong,%20Daniel%20Y.&rft.date=2016-01&rft.volume=35&rft.issue=1&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2459064&rft_dat=%3Cproquest_RIE%3E3911992921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753305198&rft_id=info:pmid/26208309&rft_ieee_id=7163608&rfr_iscdi=true |