Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid [beta]-oxidation cycle

The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid [beta]-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and microbiology 2016-01, Vol.52 (1), p.15
Hauptverfasser: Gulevich, A Yu, Skorokhodova, A Yu, Stasenko, A A, Shakulov, R S, Debabov, V G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15
container_title Applied biochemistry and microbiology
container_volume 52
creator Gulevich, A Yu
Skorokhodova, A Yu
Stasenko, A A
Shakulov, R S
Debabov, V G
description The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid [beta]-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P^sub trc-ideal-4^ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.
doi_str_mv 10.1134/S0003683816010051
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1752575788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3908354521</sourcerecordid><originalsourceid>FETCH-proquest_journals_17525757883</originalsourceid><addsrcrecordid>eNqNjc1KxDAUhYMoWH8ewN0Ft0aTybTNrGXEzax0JzKk6W1zh5Jokord-ehmwAdwdc7Hd-AwdiPFvZRq_fAihFCNVlo2QgpRyxNWlaq5Eqv1KauOmh_9ObtI6VBw0-hNxX52mE0XJrKAfiSPGMmPEAbYJusKWEcGbBnAECLIO8W7ORuPPYUJOgpp8dlhogTZxTCPriQC-S-MGXsYTM4LGEs9vHXl6p2Hb-pNpuDBLnbCK3Y2mCnh9V9estun7evjM_-I4XPGlPeHMEdf1F629apu61Zr9b_VLwB4V44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752575788</pqid></control><display><type>article</type><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid [beta]-oxidation cycle</title><source>SpringerNature Journals</source><creator>Gulevich, A Yu ; Skorokhodova, A Yu ; Stasenko, A A ; Shakulov, R S ; Debabov, V G</creator><creatorcontrib>Gulevich, A Yu ; Skorokhodova, A Yu ; Stasenko, A A ; Shakulov, R S ; Debabov, V G</creatorcontrib><description>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid [beta]-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P^sub trc-ideal-4^ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</description><identifier>ISSN: 0003-6838</identifier><identifier>EISSN: 1608-3024</identifier><identifier>DOI: 10.1134/S0003683816010051</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Biosynthesis ; Cell cycle ; Dehydrogenase ; E coli ; Ethanol ; Fatty acids ; Feasibility studies ; Fermentation ; Inactivation ; Metabolic disorders ; Oxidation</subject><ispartof>Applied biochemistry and microbiology, 2016-01, Vol.52 (1), p.15</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gulevich, A Yu</creatorcontrib><creatorcontrib>Skorokhodova, A Yu</creatorcontrib><creatorcontrib>Stasenko, A A</creatorcontrib><creatorcontrib>Shakulov, R S</creatorcontrib><creatorcontrib>Debabov, V G</creatorcontrib><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid [beta]-oxidation cycle</title><title>Applied biochemistry and microbiology</title><description>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid [beta]-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P^sub trc-ideal-4^ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</description><subject>Biosynthesis</subject><subject>Cell cycle</subject><subject>Dehydrogenase</subject><subject>E coli</subject><subject>Ethanol</subject><subject>Fatty acids</subject><subject>Feasibility studies</subject><subject>Fermentation</subject><subject>Inactivation</subject><subject>Metabolic disorders</subject><subject>Oxidation</subject><issn>0003-6838</issn><issn>1608-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjc1KxDAUhYMoWH8ewN0Ft0aTybTNrGXEzax0JzKk6W1zh5Jokord-ehmwAdwdc7Hd-AwdiPFvZRq_fAihFCNVlo2QgpRyxNWlaq5Eqv1KauOmh_9ObtI6VBw0-hNxX52mE0XJrKAfiSPGMmPEAbYJusKWEcGbBnAECLIO8W7ORuPPYUJOgpp8dlhogTZxTCPriQC-S-MGXsYTM4LGEs9vHXl6p2Hb-pNpuDBLnbCK3Y2mCnh9V9estun7evjM_-I4XPGlPeHMEdf1F629apu61Zr9b_VLwB4V44</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Gulevich, A Yu</creator><creator>Skorokhodova, A Yu</creator><creator>Stasenko, A A</creator><creator>Shakulov, R S</creator><creator>Debabov, V G</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid [beta]-oxidation cycle</title><author>Gulevich, A Yu ; Skorokhodova, A Yu ; Stasenko, A A ; Shakulov, R S ; Debabov, V G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_17525757883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biosynthesis</topic><topic>Cell cycle</topic><topic>Dehydrogenase</topic><topic>E coli</topic><topic>Ethanol</topic><topic>Fatty acids</topic><topic>Feasibility studies</topic><topic>Fermentation</topic><topic>Inactivation</topic><topic>Metabolic disorders</topic><topic>Oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulevich, A Yu</creatorcontrib><creatorcontrib>Skorokhodova, A Yu</creatorcontrib><creatorcontrib>Stasenko, A A</creatorcontrib><creatorcontrib>Shakulov, R S</creatorcontrib><creatorcontrib>Debabov, V G</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied biochemistry and microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulevich, A Yu</au><au>Skorokhodova, A Yu</au><au>Stasenko, A A</au><au>Shakulov, R S</au><au>Debabov, V G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid [beta]-oxidation cycle</atitle><jtitle>Applied biochemistry and microbiology</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>52</volume><issue>1</issue><spage>15</spage><pages>15-</pages><issn>0003-6838</issn><eissn>1608-3024</eissn><abstract>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid [beta]-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P^sub trc-ideal-4^ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1134/S0003683816010051</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6838
ispartof Applied biochemistry and microbiology, 2016-01, Vol.52 (1), p.15
issn 0003-6838
1608-3024
language eng
recordid cdi_proquest_journals_1752575788
source SpringerNature Journals
subjects Biosynthesis
Cell cycle
Dehydrogenase
E coli
Ethanol
Fatty acids
Feasibility studies
Fermentation
Inactivation
Metabolic disorders
Oxidation
title Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid [beta]-oxidation cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Escherichia%20coli%20for%201,3-butanediol%20biosynthesis%20through%20the%20inverted%20fatty%20acid%20%5Bbeta%5D-oxidation%20cycle&rft.jtitle=Applied%20biochemistry%20and%20microbiology&rft.au=Gulevich,%20A%20Yu&rft.date=2016-01-01&rft.volume=52&rft.issue=1&rft.spage=15&rft.pages=15-&rft.issn=0003-6838&rft.eissn=1608-3024&rft_id=info:doi/10.1134/S0003683816010051&rft_dat=%3Cproquest%3E3908354521%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752575788&rft_id=info:pmid/&rfr_iscdi=true