Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects

ABSTRACT The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2016-01, Vol.45 (1), p.172-181
Hauptverfasser: Lee, Tae-Kyu, Bieler, Thomas R., Kim, Choong-Un
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 1
container_start_page 172
container_title Journal of electronic materials
container_volume 45
creator Lee, Tae-Kyu
Bieler, Thomas R.
Kim, Choong-Un
description ABSTRACT The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.
doi_str_mv 10.1007/s11664-015-4186-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1752319400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3907366111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-896f40e44ad70461a1e6319589007f29fbcdaac59bd2cf66ab012e852cd79b253</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSzH9ndY1m0XagIbQVvIZvNftRtUpPtoZ786aauBy_CwDDD-77DPAjdAr0HSpMHB8BYRCjEJIKUEXaGJhBHIfHD2zma0JABiYMwvkRXzm2pF0IKE_RV7PZCDtjUODem73SDV2JQpNDVQaoKr5S0RzeIvu8-xdAZjX0tuqbFc_ysZCt0J0WP162R71joCm9aZXd-kx_lT1qn8VqTWUPyA16bvlIWF3pQVhqtlRzcNbqoRe_UzW-fotenx02-IMuXeZHPlkSGwAaSZqyOqIoiUSU0YiBAsRCyOM3893WQ1aWshJBxVlaBrBkTJYVApXEgqyQrgzicorsxd2_Nx0G5gW_NwWp_kkPiwUAWUepVMKqkNc5ZVfO97XbCHjlQfgLNR9Dc8-Mn0Jx5TzB6nNfqRtk_yf-avgHWeYCh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752319400</pqid></control><display><type>article</type><title>Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects</title><source>SpringerLink (Online service)</source><creator>Lee, Tae-Kyu ; Bieler, Thomas R. ; Kim, Choong-Un</creator><creatorcontrib>Lee, Tae-Kyu ; Bieler, Thomas R. ; Kim, Choong-Un</creatorcontrib><description>ABSTRACT The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-015-4186-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallization ; Electronics and Microelectronics ; Instrumentation ; Interconnect ; Materials Science ; Mechanical properties ; Optical and Electronic Materials ; Soldering ; Solid State Physics ; Thermal energy</subject><ispartof>Journal of electronic materials, 2016-01, Vol.45 (1), p.172-181</ispartof><rights>The Minerals, Metals &amp; Materials Society 2015</rights><rights>The Minerals, Metals &amp; Materials Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-896f40e44ad70461a1e6319589007f29fbcdaac59bd2cf66ab012e852cd79b253</citedby><cites>FETCH-LOGICAL-c316t-896f40e44ad70461a1e6319589007f29fbcdaac59bd2cf66ab012e852cd79b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-015-4186-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-015-4186-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lee, Tae-Kyu</creatorcontrib><creatorcontrib>Bieler, Thomas R.</creatorcontrib><creatorcontrib>Kim, Choong-Un</creatorcontrib><title>Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>ABSTRACT The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Interconnect</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Optical and Electronic Materials</subject><subject>Soldering</subject><subject>Solid State Physics</subject><subject>Thermal energy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSzH9ndY1m0XagIbQVvIZvNftRtUpPtoZ786aauBy_CwDDD-77DPAjdAr0HSpMHB8BYRCjEJIKUEXaGJhBHIfHD2zma0JABiYMwvkRXzm2pF0IKE_RV7PZCDtjUODem73SDV2JQpNDVQaoKr5S0RzeIvu8-xdAZjX0tuqbFc_ysZCt0J0WP162R71joCm9aZXd-kx_lT1qn8VqTWUPyA16bvlIWF3pQVhqtlRzcNbqoRe_UzW-fotenx02-IMuXeZHPlkSGwAaSZqyOqIoiUSU0YiBAsRCyOM3893WQ1aWshJBxVlaBrBkTJYVApXEgqyQrgzicorsxd2_Nx0G5gW_NwWp_kkPiwUAWUepVMKqkNc5ZVfO97XbCHjlQfgLNR9Dc8-Mn0Jx5TzB6nNfqRtk_yf-avgHWeYCh</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Lee, Tae-Kyu</creator><creator>Bieler, Thomas R.</creator><creator>Kim, Choong-Un</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160101</creationdate><title>Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects</title><author>Lee, Tae-Kyu ; Bieler, Thomas R. ; Kim, Choong-Un</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-896f40e44ad70461a1e6319589007f29fbcdaac59bd2cf66ab012e852cd79b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Interconnect</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Optical and Electronic Materials</topic><topic>Soldering</topic><topic>Solid State Physics</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tae-Kyu</creatorcontrib><creatorcontrib>Bieler, Thomas R.</creatorcontrib><creatorcontrib>Kim, Choong-Un</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Tae-Kyu</au><au>Bieler, Thomas R.</au><au>Kim, Choong-Un</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>45</volume><issue>1</issue><spage>172</spage><epage>181</epage><pages>172-181</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>ABSTRACT The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-015-4186-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2016-01, Vol.45 (1), p.172-181
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1752319400
source SpringerLink (Online service)
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallization
Electronics and Microelectronics
Instrumentation
Interconnect
Materials Science
Mechanical properties
Optical and Electronic Materials
Soldering
Solid State Physics
Thermal energy
title Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Cooling%20Rate-Induced%20Recrystallization%20on%20High%20G%20Mechanical%20Shock%20and%20Thermal%20Cycling%20in%20Sn-Ag-Cu%20Solder%20Interconnects&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lee,%20Tae-Kyu&rft.date=2016-01-01&rft.volume=45&rft.issue=1&rft.spage=172&rft.epage=181&rft.pages=172-181&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-015-4186-6&rft_dat=%3Cproquest_cross%3E3907366111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752319400&rft_id=info:pmid/&rfr_iscdi=true