ContextPreRF: Enhancing the Performance and Energy of GPUs With Nonuniform Register Access

Register files are a key data storage unit that impacts instruction throughput for graphics processing units (GPUs). Typically, GPU register files are quite large to accommodate many concurrent threads and are implemented using the same SRAM technology as the on-chip cache. We propose contextrf, a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2016-01, Vol.24 (1), p.343-347
Hauptverfasser: Moeng, Michael, Haifeng Xu, Melhem, Rami, Jones, Alex K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 1
container_start_page 343
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 24
creator Moeng, Michael
Haifeng Xu
Melhem, Rami
Jones, Alex K.
description Register files are a key data storage unit that impacts instruction throughput for graphics processing units (GPUs). Typically, GPU register files are quite large to accommodate many concurrent threads and are implemented using the same SRAM technology as the on-chip cache. We propose contextrf, a new register file architecture that efficiently leverages register files with nonuniform access characteristics, including hybrid SRAM/DRAM (S/D) and spintronic domain-wall memories (DWMs). Contextrf allows greater-capacity register files to be implemented in the same area within the GPU, with reduced power consumption. We also propose contextPreRF, a hardware preswitch scheme to hide switching delays-as soon as a register request is queued, the nonuniform access memories containing the corresponding register are sent a preemptive switch request. Thus, our scheme transparently hides the penalties of switching between register contexts. After replacing the register file SRAM with S/D, we can reduce energy by 37%, with a 1.4% average performance drop. Employing DWM, we reduce register file energy by 74%, with a 0.4% average performance penalty. For the denser DWM, we model converting the saved area into additional registers, cache, and shared memory-this improves performance by 13.5% over the baseline SRAM register file.
doi_str_mv 10.1109/TVLSI.2015.2397876
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1752040186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7070716</ieee_id><sourcerecordid>1786199546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9fbebda523e5dea3c2ff699a08334eebc70eabcd49e796aa8d2cbde0ea8fa5503</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhhujiYj-Ab1s4sVLcT-6bdcbIYAkRAmCJl6a7XYWSmCLu20i_96tEA_OHGYy87yTyRsEtwT3CMHicfE-fZv0KCa8R5lI0iQ-CzqE8yQUPs59j2MWppTgy-DKuQ3GJIoE7gSfg8rU8F3PLMxHT2ho1tKo0qxQvQY0A6sru_MTQNIUfgt2dUCVRuPZ0qGPsl6jl8o0pmwxNIdV6WqwqK8UOHcdXGi5dXBzqt1gORouBs_h9HU8GfSnoWI0rUOhc8gLySkDXoBkimodCyFxylgEkKsEg8xVEQlIRCxlWlCVF-CHqZacY9YNHo5397b6asDV2a50CrZbaaBqXEaSNCZC8Cj26P0_dFM11vjvPMUpjjBJW4oeKWUr5yzobG_LnbSHjOCstTv7tTtr7c5OdnvR3VFUAsCfIME-Scx-AOogfPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752040186</pqid></control><display><type>article</type><title>ContextPreRF: Enhancing the Performance and Energy of GPUs With Nonuniform Register Access</title><source>IEEE Electronic Library (IEL)</source><creator>Moeng, Michael ; Haifeng Xu ; Melhem, Rami ; Jones, Alex K.</creator><creatorcontrib>Moeng, Michael ; Haifeng Xu ; Melhem, Rami ; Jones, Alex K.</creatorcontrib><description>Register files are a key data storage unit that impacts instruction throughput for graphics processing units (GPUs). Typically, GPU register files are quite large to accommodate many concurrent threads and are implemented using the same SRAM technology as the on-chip cache. We propose contextrf, a new register file architecture that efficiently leverages register files with nonuniform access characteristics, including hybrid SRAM/DRAM (S/D) and spintronic domain-wall memories (DWMs). Contextrf allows greater-capacity register files to be implemented in the same area within the GPU, with reduced power consumption. We also propose contextPreRF, a hardware preswitch scheme to hide switching delays-as soon as a register request is queued, the nonuniform access memories containing the corresponding register are sent a preemptive switch request. Thus, our scheme transparently hides the penalties of switching between register contexts. After replacing the register file SRAM with S/D, we can reduce energy by 37%, with a 1.4% average performance drop. Employing DWM, we reduce register file energy by 74%, with a 0.4% average performance penalty. For the denser DWM, we model converting the saved area into additional registers, cache, and shared memory-this improves performance by 13.5% over the baseline SRAM register file.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2015.2397876</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer architecture ; Context ; Domain wall memory ; GPU ; Graphics processing units ; Hides ; hybrid memory ; Instruction sets ; Nonuniform ; Performance enhancement ; Performance evaluation ; Random access memory ; register file ; Registers ; Static random access memory ; Switches ; Switching ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2016-01, Vol.24 (1), p.343-347</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9fbebda523e5dea3c2ff699a08334eebc70eabcd49e796aa8d2cbde0ea8fa5503</citedby><cites>FETCH-LOGICAL-c328t-9fbebda523e5dea3c2ff699a08334eebc70eabcd49e796aa8d2cbde0ea8fa5503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7070716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7070716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moeng, Michael</creatorcontrib><creatorcontrib>Haifeng Xu</creatorcontrib><creatorcontrib>Melhem, Rami</creatorcontrib><creatorcontrib>Jones, Alex K.</creatorcontrib><title>ContextPreRF: Enhancing the Performance and Energy of GPUs With Nonuniform Register Access</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Register files are a key data storage unit that impacts instruction throughput for graphics processing units (GPUs). Typically, GPU register files are quite large to accommodate many concurrent threads and are implemented using the same SRAM technology as the on-chip cache. We propose contextrf, a new register file architecture that efficiently leverages register files with nonuniform access characteristics, including hybrid SRAM/DRAM (S/D) and spintronic domain-wall memories (DWMs). Contextrf allows greater-capacity register files to be implemented in the same area within the GPU, with reduced power consumption. We also propose contextPreRF, a hardware preswitch scheme to hide switching delays-as soon as a register request is queued, the nonuniform access memories containing the corresponding register are sent a preemptive switch request. Thus, our scheme transparently hides the penalties of switching between register contexts. After replacing the register file SRAM with S/D, we can reduce energy by 37%, with a 1.4% average performance drop. Employing DWM, we reduce register file energy by 74%, with a 0.4% average performance penalty. For the denser DWM, we model converting the saved area into additional registers, cache, and shared memory-this improves performance by 13.5% over the baseline SRAM register file.</description><subject>Computer architecture</subject><subject>Context</subject><subject>Domain wall memory</subject><subject>GPU</subject><subject>Graphics processing units</subject><subject>Hides</subject><subject>hybrid memory</subject><subject>Instruction sets</subject><subject>Nonuniform</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Random access memory</subject><subject>register file</subject><subject>Registers</subject><subject>Static random access memory</subject><subject>Switches</subject><subject>Switching</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhhujiYj-Ab1s4sVLcT-6bdcbIYAkRAmCJl6a7XYWSmCLu20i_96tEA_OHGYy87yTyRsEtwT3CMHicfE-fZv0KCa8R5lI0iQ-CzqE8yQUPs59j2MWppTgy-DKuQ3GJIoE7gSfg8rU8F3PLMxHT2ho1tKo0qxQvQY0A6sru_MTQNIUfgt2dUCVRuPZ0qGPsl6jl8o0pmwxNIdV6WqwqK8UOHcdXGi5dXBzqt1gORouBs_h9HU8GfSnoWI0rUOhc8gLySkDXoBkimodCyFxylgEkKsEg8xVEQlIRCxlWlCVF-CHqZacY9YNHo5397b6asDV2a50CrZbaaBqXEaSNCZC8Cj26P0_dFM11vjvPMUpjjBJW4oeKWUr5yzobG_LnbSHjOCstTv7tTtr7c5OdnvR3VFUAsCfIME-Scx-AOogfPg</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Moeng, Michael</creator><creator>Haifeng Xu</creator><creator>Melhem, Rami</creator><creator>Jones, Alex K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201601</creationdate><title>ContextPreRF: Enhancing the Performance and Energy of GPUs With Nonuniform Register Access</title><author>Moeng, Michael ; Haifeng Xu ; Melhem, Rami ; Jones, Alex K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9fbebda523e5dea3c2ff699a08334eebc70eabcd49e796aa8d2cbde0ea8fa5503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer architecture</topic><topic>Context</topic><topic>Domain wall memory</topic><topic>GPU</topic><topic>Graphics processing units</topic><topic>Hides</topic><topic>hybrid memory</topic><topic>Instruction sets</topic><topic>Nonuniform</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Random access memory</topic><topic>register file</topic><topic>Registers</topic><topic>Static random access memory</topic><topic>Switches</topic><topic>Switching</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moeng, Michael</creatorcontrib><creatorcontrib>Haifeng Xu</creatorcontrib><creatorcontrib>Melhem, Rami</creatorcontrib><creatorcontrib>Jones, Alex K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moeng, Michael</au><au>Haifeng Xu</au><au>Melhem, Rami</au><au>Jones, Alex K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ContextPreRF: Enhancing the Performance and Energy of GPUs With Nonuniform Register Access</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2016-01</date><risdate>2016</risdate><volume>24</volume><issue>1</issue><spage>343</spage><epage>347</epage><pages>343-347</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Register files are a key data storage unit that impacts instruction throughput for graphics processing units (GPUs). Typically, GPU register files are quite large to accommodate many concurrent threads and are implemented using the same SRAM technology as the on-chip cache. We propose contextrf, a new register file architecture that efficiently leverages register files with nonuniform access characteristics, including hybrid SRAM/DRAM (S/D) and spintronic domain-wall memories (DWMs). Contextrf allows greater-capacity register files to be implemented in the same area within the GPU, with reduced power consumption. We also propose contextPreRF, a hardware preswitch scheme to hide switching delays-as soon as a register request is queued, the nonuniform access memories containing the corresponding register are sent a preemptive switch request. Thus, our scheme transparently hides the penalties of switching between register contexts. After replacing the register file SRAM with S/D, we can reduce energy by 37%, with a 1.4% average performance drop. Employing DWM, we reduce register file energy by 74%, with a 0.4% average performance penalty. For the denser DWM, we model converting the saved area into additional registers, cache, and shared memory-this improves performance by 13.5% over the baseline SRAM register file.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2015.2397876</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2016-01, Vol.24 (1), p.343-347
issn 1063-8210
1557-9999
language eng
recordid cdi_proquest_journals_1752040186
source IEEE Electronic Library (IEL)
subjects Computer architecture
Context
Domain wall memory
GPU
Graphics processing units
Hides
hybrid memory
Instruction sets
Nonuniform
Performance enhancement
Performance evaluation
Random access memory
register file
Registers
Static random access memory
Switches
Switching
Very large scale integration
title ContextPreRF: Enhancing the Performance and Energy of GPUs With Nonuniform Register Access
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ContextPreRF:%20Enhancing%20the%20Performance%20and%20Energy%20of%20GPUs%20With%20Nonuniform%20Register%20Access&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Moeng,%20Michael&rft.date=2016-01&rft.volume=24&rft.issue=1&rft.spage=343&rft.epage=347&rft.pages=343-347&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2015.2397876&rft_dat=%3Cproquest_RIE%3E1786199546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752040186&rft_id=info:pmid/&rft_ieee_id=7070716&rfr_iscdi=true