Tissue mechanics govern the rapidly adapting and symmetrical response to touch
Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-12, Vol.112 (50), p.E6955-E6963 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E6963 |
---|---|
container_issue | 50 |
container_start_page | E6955 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Eastwood, Amy L. Sanzeni, Alessandro Petzold, Bryan C. Park, Sung-Jin Vergassola, Massimo Pruitt, Beth L. Goodman, Miriam B. |
description | Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical transduction (MeT) channels. Pacinian corpuscles in mammals and touch receptor neurons (TRNs) inCaenorhabditis elegansnematodes are embedded in distinctive specialized accessory structures, have low thresholds for activation, and adapt rapidly to the application and removal of mechanical loads. Recently, many of the protein partners that form native MeT channels in these and other somatosensory neurons have been identified. However, the biophysical mechanism of symmetric responses to the onset and offset of mechanical stimulation has eluded understanding for decades. Moreover, it is not known whether applied force or the resulting indentation activate MeT channels. Here, we introduce a system for simultaneously recording membrane current, applied force, and the resulting indentation in livingC. elegans(Feedback-controlled Application of mechanical Loads Combined with in vivo Neurophysiology, FALCON) and use it, together with modeling, to study these questions. We show that current amplitude increases with indentation, not force, and that fast stimuli evoke larger currents than slower stimuli producing the same or smaller indentation. A model linking body indentation to MeT channel activation through an embedded viscoelastic element reproduces the experimental findings, predicts that the TRNs function as a band-pass mechanical filter, and provides a general mechanism for symmetrical and rapidly adapting MeT channel activation relevant to somatosensory neurons across phyla and submodalities. |
doi_str_mv | 10.1073/pnas.1514138112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1751219713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26466645</jstor_id><sourcerecordid>26466645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-4d476eefe147a93d1fb266be20d9e842ad5787292d29ec7c4379e975e8ae3c173</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EotvCmRPIEhcuaT2OP-ILEqpKQargUs6W15ntepU4wU6Q9r_H0S5L4VTJ0hz8m6c37xHyBtglMF1fjdHlS5AgoG4A-DOyAmagUsKw52TFGNdVI7g4I-c57xhjRjbsJTnjSnGtQa_It_uQ84y0R791MfhMH4ZfmCKdtkiTG0Pb7alr3TiF-EBdbGne9z1OKXjX0YR5HGJGOg3lzX77irzYuC7j6-O8ID8-39xff6nuvt9-vf50V3lp5FSJVmiFuEEQ2pm6hc26WFojZ63BYti1UjeaG95yg157UWuDRktsHNYedH1BPh50x3ndY-sxTsl1dkyhd2lvBxfsvz8xbG25zArVaKllEfhwFEjDzxnzZPuQPXadizjM2YJWxWnTqPoJqDDGgJEL-v4_dDfMKZYkCiWBg9HwFEppUairA-XTkHPCzek6YHYp3y7l27_ll413j0M58X_aLgA9AsvmSQ64lczeKCOXXN4ekF2ehvRIQiilhKx_AwGRvrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751219674</pqid></control><display><type>article</type><title>Tissue mechanics govern the rapidly adapting and symmetrical response to touch</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Eastwood, Amy L. ; Sanzeni, Alessandro ; Petzold, Bryan C. ; Park, Sung-Jin ; Vergassola, Massimo ; Pruitt, Beth L. ; Goodman, Miriam B.</creator><creatorcontrib>Eastwood, Amy L. ; Sanzeni, Alessandro ; Petzold, Bryan C. ; Park, Sung-Jin ; Vergassola, Massimo ; Pruitt, Beth L. ; Goodman, Miriam B.</creatorcontrib><description>Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical transduction (MeT) channels. Pacinian corpuscles in mammals and touch receptor neurons (TRNs) inCaenorhabditis elegansnematodes are embedded in distinctive specialized accessory structures, have low thresholds for activation, and adapt rapidly to the application and removal of mechanical loads. Recently, many of the protein partners that form native MeT channels in these and other somatosensory neurons have been identified. However, the biophysical mechanism of symmetric responses to the onset and offset of mechanical stimulation has eluded understanding for decades. Moreover, it is not known whether applied force or the resulting indentation activate MeT channels. Here, we introduce a system for simultaneously recording membrane current, applied force, and the resulting indentation in livingC. elegans(Feedback-controlled Application of mechanical Loads Combined with in vivo Neurophysiology, FALCON) and use it, together with modeling, to study these questions. We show that current amplitude increases with indentation, not force, and that fast stimuli evoke larger currents than slower stimuli producing the same or smaller indentation. A model linking body indentation to MeT channel activation through an embedded viscoelastic element reproduces the experimental findings, predicts that the TRNs function as a band-pass mechanical filter, and provides a general mechanism for symmetrical and rapidly adapting MeT channel activation relevant to somatosensory neurons across phyla and submodalities.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1514138112</identifier><identifier>PMID: 26627717</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Biomechanics ; Biophysics ; Caenorhabditis elegans ; Caenorhabditis elegans - physiology ; Filters ; Mammals - physiology ; Mechanotransduction, Cellular ; Nematoda ; Nematodes ; Neurons ; Neuropsychology ; Physical Sciences ; Physical Stimulation ; PNAS Plus ; Sensory perception ; Signal transduction ; Symmetry ; Touch ; Viscoelasticity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.E6955-E6963</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-4d476eefe147a93d1fb266be20d9e842ad5787292d29ec7c4379e975e8ae3c173</citedby><cites>FETCH-LOGICAL-c595t-4d476eefe147a93d1fb266be20d9e842ad5787292d29ec7c4379e975e8ae3c173</cites><orcidid>0000-0002-5810-1272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26466645$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26466645$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26627717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eastwood, Amy L.</creatorcontrib><creatorcontrib>Sanzeni, Alessandro</creatorcontrib><creatorcontrib>Petzold, Bryan C.</creatorcontrib><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Vergassola, Massimo</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><title>Tissue mechanics govern the rapidly adapting and symmetrical response to touch</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical transduction (MeT) channels. Pacinian corpuscles in mammals and touch receptor neurons (TRNs) inCaenorhabditis elegansnematodes are embedded in distinctive specialized accessory structures, have low thresholds for activation, and adapt rapidly to the application and removal of mechanical loads. Recently, many of the protein partners that form native MeT channels in these and other somatosensory neurons have been identified. However, the biophysical mechanism of symmetric responses to the onset and offset of mechanical stimulation has eluded understanding for decades. Moreover, it is not known whether applied force or the resulting indentation activate MeT channels. Here, we introduce a system for simultaneously recording membrane current, applied force, and the resulting indentation in livingC. elegans(Feedback-controlled Application of mechanical Loads Combined with in vivo Neurophysiology, FALCON) and use it, together with modeling, to study these questions. We show that current amplitude increases with indentation, not force, and that fast stimuli evoke larger currents than slower stimuli producing the same or smaller indentation. A model linking body indentation to MeT channel activation through an embedded viscoelastic element reproduces the experimental findings, predicts that the TRNs function as a band-pass mechanical filter, and provides a general mechanism for symmetrical and rapidly adapting MeT channel activation relevant to somatosensory neurons across phyla and submodalities.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biomechanics</subject><subject>Biophysics</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Filters</subject><subject>Mammals - physiology</subject><subject>Mechanotransduction, Cellular</subject><subject>Nematoda</subject><subject>Nematodes</subject><subject>Neurons</subject><subject>Neuropsychology</subject><subject>Physical Sciences</subject><subject>Physical Stimulation</subject><subject>PNAS Plus</subject><subject>Sensory perception</subject><subject>Signal transduction</subject><subject>Symmetry</subject><subject>Touch</subject><subject>Viscoelasticity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS0EotvCmRPIEhcuaT2OP-ILEqpKQargUs6W15ntepU4wU6Q9r_H0S5L4VTJ0hz8m6c37xHyBtglMF1fjdHlS5AgoG4A-DOyAmagUsKw52TFGNdVI7g4I-c57xhjRjbsJTnjSnGtQa_It_uQ84y0R791MfhMH4ZfmCKdtkiTG0Pb7alr3TiF-EBdbGne9z1OKXjX0YR5HGJGOg3lzX77irzYuC7j6-O8ID8-39xff6nuvt9-vf50V3lp5FSJVmiFuEEQ2pm6hc26WFojZ63BYti1UjeaG95yg157UWuDRktsHNYedH1BPh50x3ndY-sxTsl1dkyhd2lvBxfsvz8xbG25zArVaKllEfhwFEjDzxnzZPuQPXadizjM2YJWxWnTqPoJqDDGgJEL-v4_dDfMKZYkCiWBg9HwFEppUairA-XTkHPCzek6YHYp3y7l27_ll413j0M58X_aLgA9AsvmSQ64lczeKCOXXN4ekF2ehvRIQiilhKx_AwGRvrc</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Eastwood, Amy L.</creator><creator>Sanzeni, Alessandro</creator><creator>Petzold, Bryan C.</creator><creator>Park, Sung-Jin</creator><creator>Vergassola, Massimo</creator><creator>Pruitt, Beth L.</creator><creator>Goodman, Miriam B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5810-1272</orcidid></search><sort><creationdate>20151215</creationdate><title>Tissue mechanics govern the rapidly adapting and symmetrical response to touch</title><author>Eastwood, Amy L. ; Sanzeni, Alessandro ; Petzold, Bryan C. ; Park, Sung-Jin ; Vergassola, Massimo ; Pruitt, Beth L. ; Goodman, Miriam B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-4d476eefe147a93d1fb266be20d9e842ad5787292d29ec7c4379e975e8ae3c173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biomechanics</topic><topic>Biophysics</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Filters</topic><topic>Mammals - physiology</topic><topic>Mechanotransduction, Cellular</topic><topic>Nematoda</topic><topic>Nematodes</topic><topic>Neurons</topic><topic>Neuropsychology</topic><topic>Physical Sciences</topic><topic>Physical Stimulation</topic><topic>PNAS Plus</topic><topic>Sensory perception</topic><topic>Signal transduction</topic><topic>Symmetry</topic><topic>Touch</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eastwood, Amy L.</creatorcontrib><creatorcontrib>Sanzeni, Alessandro</creatorcontrib><creatorcontrib>Petzold, Bryan C.</creatorcontrib><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Vergassola, Massimo</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eastwood, Amy L.</au><au>Sanzeni, Alessandro</au><au>Petzold, Bryan C.</au><au>Park, Sung-Jin</au><au>Vergassola, Massimo</au><au>Pruitt, Beth L.</au><au>Goodman, Miriam B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue mechanics govern the rapidly adapting and symmetrical response to touch</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>112</volume><issue>50</issue><spage>E6955</spage><epage>E6963</epage><pages>E6955-E6963</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical transduction (MeT) channels. Pacinian corpuscles in mammals and touch receptor neurons (TRNs) inCaenorhabditis elegansnematodes are embedded in distinctive specialized accessory structures, have low thresholds for activation, and adapt rapidly to the application and removal of mechanical loads. Recently, many of the protein partners that form native MeT channels in these and other somatosensory neurons have been identified. However, the biophysical mechanism of symmetric responses to the onset and offset of mechanical stimulation has eluded understanding for decades. Moreover, it is not known whether applied force or the resulting indentation activate MeT channels. Here, we introduce a system for simultaneously recording membrane current, applied force, and the resulting indentation in livingC. elegans(Feedback-controlled Application of mechanical Loads Combined with in vivo Neurophysiology, FALCON) and use it, together with modeling, to study these questions. We show that current amplitude increases with indentation, not force, and that fast stimuli evoke larger currents than slower stimuli producing the same or smaller indentation. A model linking body indentation to MeT channel activation through an embedded viscoelastic element reproduces the experimental findings, predicts that the TRNs function as a band-pass mechanical filter, and provides a general mechanism for symmetrical and rapidly adapting MeT channel activation relevant to somatosensory neurons across phyla and submodalities.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26627717</pmid><doi>10.1073/pnas.1514138112</doi><orcidid>https://orcid.org/0000-0002-5810-1272</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.E6955-E6963 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1751219713 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Biomechanics Biophysics Caenorhabditis elegans Caenorhabditis elegans - physiology Filters Mammals - physiology Mechanotransduction, Cellular Nematoda Nematodes Neurons Neuropsychology Physical Sciences Physical Stimulation PNAS Plus Sensory perception Signal transduction Symmetry Touch Viscoelasticity |
title | Tissue mechanics govern the rapidly adapting and symmetrical response to touch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue%20mechanics%20govern%20the%20rapidly%20adapting%20and%20symmetrical%20response%20to%20touch&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Eastwood,%20Amy%20L.&rft.date=2015-12-15&rft.volume=112&rft.issue=50&rft.spage=E6955&rft.epage=E6963&rft.pages=E6955-E6963&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1514138112&rft_dat=%3Cjstor_proqu%3E26466645%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751219674&rft_id=info:pmid/26627717&rft_jstor_id=26466645&rfr_iscdi=true |